
✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 463 — #1
✐

✐

✐

✐

✐

✐

9
Graphics and Animation

9.1 Fundamentals
9.1.1 Coordinate Spaces
9.1.2 Colors
9.1.3 Pixels vs. Objects/Vectors
9.1.4 Animation

9.2 HTML and CSS
9.2.1 HTML Elements for Graphics
9.2.2 CSS
9.2.3 Visual Properties
9.2.4 Absolute Position
9.2.5 Case Study: Bar Chart
9.2.6 Case Study: Towers of Hanoi Display

9.3 Animation in HTML and CSS
9.3.1 Constant Velocity
9.3.2 Fading In and Out
9.3.3 Animating Other Properties
9.3.4 Ramped (or Eased) Animation
9.3.5 Declarative CSS Animation

9.4 The Canvas Element
9.4.1 Instantiating a Canvas
9.4.2 The Rendering Context
9.4.3 Drawing Rectangles
9.4.4 Drawing Lines and Polygons
9.4.5 Drawing Arcs and Circles
9.4.6 Drawing Bezier and Quadratic Curves
9.4.7 Working with Images

9.4.8 Transformations
9.4.9 Animation
9.4.10Canvas by Example

9.5 SVG
9.5.1 Seeing SVG in a Web Browser
9.5.2 SVG Case Study: A Be′zier

Curve Editor
9.5.3 Objects in the Drawing
9.5.4 Reading and Writing Attributes
9.5.5 Interactivity (a.k.a. Event Handling

Redux)
9.5.6 Other SVG Features

9.6 3D Graphics with WebGL
9.6.1 WebGL is the 3D canvas
9.6.2 Case Study: The Sierpinski Gasket
9.6.3 Defining the 3D Data
9.6.4 Shader Code
9.6.5 Drawing the Scene
9.6.6 Interactivity and Events

9.7 Other Client-Side Graphics Technologies
9.7.1 Flash
9.7.2 Java
9.7.3 VML
Chapter Summary
Exercises

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 464 — #2
✐

✐

✐

✐

✐

✐

464 CHAPTER 9 Graphics and Animation

Introduction
Many JavaScript applications involve performing computations and showing re-
sults by manipulating the DOM of a web page. Effective event handling, as seen in
Chapter 6, based on both user activity and the passage of time, facilitates interac-
tivity, with JavaScript as the connecting technology. We have seen, so far, that our
options for displaying information to the user have been generally text or images
that are stored (or generated) on a server. This range of elements is adequate for
conventional documents and forms but falls short for applications such as games,
simulations, visualization, and animation.

This chapter aims to introduce you to the suite of visual, graphics, and anima-
tion technologies that are available in modern, standards-compliant web browsers.
These options range from additional visual and graphical properties within the
HTML DOM to full-fledged graphics technologies that allow you to draw and
fill lines, curves, polygons, or other shapes, perform sophisticated image pro-
cessing and compositing operations, and even render hardware-accelerated three-
dimensional (3D) objects. All this, manipulated entirely within your browser, with
no additional software.

9.1 Fundamentals

Certain concepts and techniques are common to all graphics and animation subsys-
tems. This section introduces the core set that underlies the specific technologies
in this chapter.

9.1.1 Coordinate Spaces

All computer graphics operations are generally performed within the context of a
coordinate space—that is, a two-dimensional (2D) or 3D region within which colors,
lines, shapes, or other entities are placed. A specific location within that space can
be represented with sequences of numbers called coordinates, with one number for
each dimension of the space. Thus, 2D coordinates are represented by an ordered
pair (x, y), while 3D coordinates are represented by an ordered triple (x, y, z). By
convention, the x in 2D or 3D coordinates represents a horizontal location (“left
to right”), while y is vertical (“up to down”). In 3D, z is typically referred to as
depth, representing the “front-to-back” dimension. The special coordinates (0, 0)
and (0, 0, 0) are designated as the origin of the space.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 465 — #3
✐

✐

✐

✐

✐

✐

9.1 Fundamentals 465

The direction along which a coordinate grows also varies based on the graph-
ics system. A typical convention is to have x-coordinates increase to the right.
In 2D graphics systems, y-coordinates usually increase in the downward direc-
tion. In some 3D graphics systems, the y-coordinate increases upward, with the
z-coordinate increasing as it moves toward the viewer. These are all conventions,
however, and there is no hard-and-fast rule on directionality and coordinate values,
it is thus another thing to note when learning about a new graphics technology.

Coordinate spaces give us an unambiguous mechanism for designating positions
and sizes—an understandably crucial part of being able to tell a computer where
to draw something. Figure 9.1 illustrates typical 2D and 3D coordinate spaces.

(0, 0)

(0, 0)

x

x

y

y

x

z

x

z

y

y

(0, 0, 0) (0, 0, 0)

FIGURE 9.1

2D and 3D coordinate spaces, each showing a rectangle with opposite corners (2, 1) (indicated
by the small square) and (4, 2) (indicated by the small triangle) in 2D, or (2, 1, 0) and (4, 2, 0) in
3D.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 466 — #4
✐

✐

✐

✐

✐

✐

466 CHAPTER 9 Graphics and Animation

In the physical world, we tend to attach units to coordinates and distances.
A location on the earth is typically given in degrees (latitude and longitude);
lengths or distances may be measured in inches, meters, miles, or even light-years,
with “square” or “cubic” versions of these units representing areas and volumes,
respectively. Computer graphics systems vary in their use of units. Keep an eye on
them in the later sections.

9.1.2 Colors

If coordinate spaces define where or how big a visual entity may be, colors form
the basis of what that entity looks like. Without going into a deeper discussion
of the physics of light and color, suffice it to say that in most computer graphics
systems, a color is represented by the ordered triple (r, g, b), with r representing
the amount of red in a color, g representing the amount of green, and b representing
the amount of blue. The scale used varies depending on the graphics technology.
One convention, for example, uses 0 to mean the complete absence of r, g, or b and
1 for any of these colors at “full intensity.” Fractional values represent all levels in
between. Under this convention, the RGB color (0, 0, 0) is black, (1, 1, 1) is white,
(1, 0, 0) is red, (1, 1, 0) is yellow, (0, 1, 0) is green, (0, 0, 1) is blue, (0.5, 0.5, 0.5) is
a medium gray, (0.25, 0, 0.25) is a deep, dark violet, etc.

The range of colors that can be formed by this system is typically shown as
a color cube, with red, green, and blue each representing one dimension in a 3D
coordinate space (see Figure 9.2). To “quantify” a particular color, one would find
that color within the cube; its RGB representation would then be the coordinates
of that color.

Some graphics systems accept a fourth value, called the alpha channel, as part
of a color definition. The alpha channel represents transparency, with the minimum
value (typically 0) denoting a completely transparent color and the maximum
value (typically 1) denoting complete opacity. Thus, the RGBA tuple (1, 0, 1, 0.75)
represents a 75% opaque magenta. In other words, if this color is “painted” over
another color, approximately one-fourth of that preexisting color will be visible
beneath the magenta.1

While it is convenient to think about colors as levels from 0 to 1, many web
technologies use a different scale, from 0 to 255. Further complicating the issue, this

1The specific computation that takes place can actually vary quite a bit, but that’s for a

computer graphics book to handle, not an introduction to programming.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 467 — #5
✐

✐

✐

✐

✐

✐

9.1 Fundamentals 467

black (0, 0, 0) white (1, 1, 1) green (0, 1, 0) yellow (1, 1, 0)

FIGURE 9.2

The RGB color cube from different perspectives, with the indicated colors at the protruding corners
[Rok09].

range is sometimes represented in hexadecimal, from 00 to FF (refer to Section 3.3.4
for a refresher). When expressed in this manner, an RGB color starts with a
pound/number sign (#) then lists the two-hexadecimal-digit red, green, and blue
values in that order. The example RGB colors in Figure 9.2, when written this way,
would be #000000 for black, #FFFFFF for white, #00FF00 for green, and #FFFF00

for yellow. The expression #000033 would be a dark blue, #808080 a medium gray,
#FFE6E6 a light pink, and so on.

9.1.3 Pixels vs. Objects/Vectors

There are two main approaches for describing a computer graphics image or
“scene”: it can be represented as a discrete grid of colored squares or pixels (e.g.,
images from a digital camera or scanner) or as a set of geometric or other objects,
each with different properties and characteristics (e.g., pictures created by drawing
programs like Adobe Illustrator, Dia, OmniGraffle, or Microsoft Visio).

With the pixel-based or image-space perspective of a scene, all operations
end up changing the color(s) of one or more pixels. With such a perspective, a
drawCircle function would calculate a set of pixels that best approximates a circle
and would color that set accordingly. The notion of a circle dissipates after that.
Once the circle is colored, only the pixels remain.

With the object-space perspective (also known as vector-based graphics), a com-
puter graphics scene is viewed as a collection of entities that can be manipulated

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 468 — #6
✐

✐

✐

✐

✐

✐

468 CHAPTER 9 Graphics and Animation

individually. The pixels that these entities occupy cannot be changed directly; in-
stead, modifications to an object’s properties, such as its size, location, color, line
style, and others, result in object-wide changes in its appearance. In this perspec-
tive, a drawCircle function would retain the notion of a circle after it is called. A
mechanism would exist through which the drawn circle could be retrieved as a cir-
cle, and properties such as radius, location, color, etc., could be changed directly.
Such property changes would then affect the circle’s and/or its scene’s appearance.

There is no “best” approach here. The perspective to choose depends on the
needs of the computer graphics application. A digital photo editor is better served
by a pixel-based perspective since photographs store only pixels, not shapes or
objects, while a diagramming program is better served by objects since diagrams
are manipulated in terms of individual shapes and lines. Some advanced programs
combine both perspectives, but at any given moment, the user does retain one
approach or the other.

The general tradeoff between pixels and objects/vectors is that the pixel-
oriented approach gives you absolutely fine control over how a scene looks—literally
down to the dots that comprise the picture—while the object-based approach typ-
ically uses fewer machine resources (there tend to be millions of pixels in a picture
as opposed to a few hundred objects) and provides for resolution independence.
Object-based graphics can be scaled up or down and, since the objects are re-
drawn every time, they can always be drawn for maximum detail or smoothness.
Figure 9.3 illustrates this tradeoff. In the figure, the same circle, with a radius
of 25 pixels, is drawn with a pixel-based technology, then with an object-based
technology. The picture is then magnified a few times over.

The web page shown is in fact drawn using two technologies that we will cover
in this chapter: the pixel-based canvas element and the object-based Scalable
Vector Graphics or SVG standard. In case you are wondering, the full code to the
page is shown here:
✞ �

<!DOCTYPE html>
<html>
<!-- This page requires a fully HTML5-compliant web browser.

Make sure to zoom in as much as possible to see the
pixel-vs.-object difference. -->

<head>
<meta charset="UTF-8"/>
<title>Pixel vs. Object</title>

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 469 — #7
✐

✐

✐

✐

✐

✐

9.1 Fundamentals 469

FIGURE 9.3

Comparison of a shaded circle with pixel-based (left) vs. object-based (right) approaches.

<script>
window.onload = function () {
var canvas = document.getElementById("canvas");
var renderingContext = canvas.getContext("2d");

// Image-space circle.
var radialGradient = renderingContext.createRadialGradient

(42, 42, 1, 50, 50, 25);
radialGradient.addColorStop(0, "white");
radialGradient.addColorStop(1, "#880000");

renderingContext.fillStyle = radialGradient;
renderingContext.beginPath();
renderingContext.arc(50, 50, 25, 0, Math.PI * 2, true);
renderingContext.fill();

};
</script>

</head>

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 470 — #8
✐

✐

✐

✐

✐

✐

470 CHAPTER 9 Graphics and Animation

<body>
<!-- Pixel-space circle will go here. -->
<canvas width="100" height="100" id="canvas"></canvas>

<!-- Object-space circle. -->
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"
width="100" height="100" viewBox="0 0 100 100"
style="width: 100px; height: 100px;">
<radialGradient id="radialGradient"
cx="50" cy="50" r="25" fx="42" fy="42"
gradientUnits="userSpaceOnUse">
<stop offset="0%" stop-color="white" />
<stop offset="100%" stop-color="#880000" />

</radialGradient>
<circle cx="50" cy="50" r="25" fill="url(#radialGradient)" />

</svg>
</body>

</html>
✝ ✆

In the end, the final representation is based on the display technology used for
viewing computer graphics. Today, these technologies are almost all pixel-based,
and so even object- or vector-based graphics get converted into pixels (a process
called rasterization or scan conversion) as they reach the computer display.

9.1.4 Animation

At its core, animation involves showing a sequence of images quickly enough that
the viewer perceives the illusion of motion, with “quickly enough” being 30 or
more images, or frames, per second. Differences between successive images should
be fairly small, allowing the brain to “fill in the blanks” from one frame to the
other.

When the images are pixel-based, the approach to animation is typically to
redraw frames in their entirety, since any pixel can change at any time. Under
certain circumstances, only the parts of the frame that change can be redrawn, if
those parts are known.

For object- or vector-based animation, object properties such as position, size,
color, and others are changed in small amounts at each “frame” or interval. The
object-based graphics system then takes care of redisplaying the objects.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 471 — #9
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 471

Review and Practice

1. Based on how colors are “quantified” as described in Section 9.1.2, state
how the following color changes would be performed on some (r, g, b) value:

Make the color brighter

Make the color darker

Make the color a gray level

2. What is the difference between pixel- and object-based graphics? What
factors or features would make you choose one over the other?

9.2 HTML and CSS

Chapter 6 introduced how web pages are really trees or outlines of elements that
can be created using either HTML or JavaScript. These elements comprise what
is called the Document Object Model, or DOM.

In that chapter, the DOM was viewed as a mechanism for creating user in-
terfaces. In this chapter, we add a new dimension to the DOM: we view it as a
visual medium. Using the terminology of the previous section, the DOM can be
used as an object-based computer graphics system, with the spectrum of possible
web elements serving as the objects to display, and Cascading Style Sheets, or CSS,
serving as the mechanism for determining how these objects look.

9.2.1 HTML Elements for Graphics

Chapter 6, and in particular Section 6.2, showed you how to build web pages con-
sisting of elements such as paragraphs (p), push buttons (input with type="button"),
text fields (input with type="input"), lists (select), and others. These elements
are not typically what one would associate with computer graphics, however. In
this section, we look at other elements that are better suited for general-purpose
visuals.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 472 — #10
✐

✐

✐

✐

✐

✐

472 CHAPTER 9 Graphics and Animation

The img Element

The img element includes ready-made image files such as screenshots, digital pho-
tos, or any other (web-compatible) visual content in a web page. This element’s
most important attribute is src, which specifies the image file to include, either
as an absolute web address or a path relative to the location of the web page. In
HTML, img is specified as follows:
✞ �

✝ ✆

This causes the image file located at http://javascript.cs.lmu.edu/images/
bookcover.jpg to appear wherever the tag is located in the web page.

As with all web page elements, you can also create an element in JavaScript
and append it to the web page. The following code is meant to be run in our
JavaScript runner page at http://javascript.cs.lmu.edu/runner; it creates
an img element that is identical to the previous HTML example and adds it to the
web element whose id is "footer" (yes, this is a try-it-yourself example):
✞ �

var footer = document.getElementById("footer");
var image = document.createElement("img");
image.src = "http://javascript.cs.lmu.edu/images/bookcover.jpg";
footer.appendChild(image);

✝ ✆

The div Element

The div element serves as a sort of counterpoint to img; instead of an element
that displays prepared content, div is more of a blank slate. It can be viewed as a
“graphics-from-scratch” building block.

Specifying a div element in HTML is trivial:
✞ �

<div></div>
✝ ✆

Or, for use in http://javascript.cs.lmu.edu/runner (adjust accordingly
when using this code fragment on a different web page):
✞ �

var footer = document.getElementById("footer");
var div = document.createElement("div");
footer.appendChild(div);

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 473 — #11
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 473

In this minimal form, however, the result is as trivial as the mechanism: you
get nothing more than a box with zero height. Instead, the usefulness of div comes
from using it as a generic container for other elements and the customization of
its visual properties. The div element truly is the blank slate of the DOM.

The next few sections illustrate just how this blank slate can be turned into a
wide variety of object-based graphics displays on a web page.

9.2.2 CSS

CSS, or Cascading Style Sheets, is the visual or presentation technology of the web.
You have already used some CSS: it is effectively the DOM property named style.
By touching style, whether in JavaScript or HTML (as the style attribute within
most tags), you are touching CSS.

The C in CSS stands for cascading, which tries to express how the style

property or attribute may be applied at many levels, ranging from a single, unique
element (this particular div; that exact img) to all elements of a particular type
(all p elements; all h1 elements) to all elements with the same class, which is a
new way to group or categorize elements that we have not seen before. Specific
style values may also be applicable only to elements at a certain point in the web
page, such as only a elements that are inside p elements.

To illustrate some ways by which style can be assigned, we will use an easily
discernible, easy-to-understand visual property: border-style. The border-style
property represents how an element’s boundaries are rendered. Known border
styles include dotted, dashed, solid, double, groove, ridge, inset, outset,
and none (for no border at all).

Individual Elements

Individual elements can be given specific visual properties in the following ways:

The style attribute for elements created using HTML tags

The style property for elements created or accessed through the DOM

A CSS rule that selects a single element by its id attribute/property

These ways are illustrated in the following examples; all of them pertain to the
JavaScript runner page at http://javascript.cs.lmu.edu/runner, and they all

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 474 — #12
✐

✐

✐

✐

✐

✐

474 CHAPTER 9 Graphics and Animation

have the identical result of setting the border of the introduction element to
solid.

In its original form, this element is specified in HTML as follows:
✞ �

<p id="introduction">
<!-- Text and other tags go here. -->

</p>
✝ ✆

Modifying the tag as shown below gives this element a solid border:
✞ �

<p id="introduction" style="border-style: solid">
<!-- Text and other tags go here. -->

</p>
✝ ✆

Alternatively, you can run the following code to set border-style through
JavaScript. Note how the hyphenated property name is replaced by its “camel
case” version; that is, hyphens are replaced with a capitalized first letter (can you
explain why this change is necessary?):
✞ �

document.getElementById("introduction").style.borderStyle = "solid";
✝ ✆

This code fragment uses getElementById to retrieve the introduction ele-
ment, then assigns the string "solid" to the borderStyle subproperty of that
element’s style property.

Style assignment by CSS rule involves modifying the HTML again. For this
approach, the pound sign (#) is shorthand for “the element whose id is . . . ,” and
the curly braces ({ }) enclose the CSS properties to be applied:
✞ �

<head>
<!-- Other head elements go here. -->
<style type="text/css">

#introduction {
border-style: solid

}
</style>

</head>
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 475 — #13
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 475

For both the HTML attribute and CSS rule approaches, multiple style prop-
erties can be set by separating them with semicolons (;):
✞ �

<p id="introduction" style="border-style: solid; color: red">
<!-- Text and other tags go here. -->

</p>
✝ ✆

Or:
✞ �

<head>
<!-- Other head elements go here. -->
<style type="text/css">

#introduction {
border-style: solid;
color: red

}
</style>

</head>
✝ ✆

Test yourself: see if you can figure out how to set multiple style properties in
JavaScript. No worries if you can’t; you will learn how soon enough.

Elements of the Same Type

To assign the same visual properties to all elements of the same type, say all
p elements, you may use either JavaScript or a CSS rule. Because this style

assignment affects multiple elements uniformly, the “in-tag” approach does not
apply.

The document object’s getElementsByTagName function returns an array of
every element with the same type/tag. You can then use a for statement to assign
the style subproperties for every element in that array (you can try this yourself
at http://javascript.cs.lmu.edu/runner):
✞ �

var pElements = document.getElementsByTagName("p");
for (var i = 0; i < pElements.length; i += 1) {

pElements[i].style.borderStyle = "solid";
}

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 476 — #14
✐

✐

✐

✐

✐

✐

476 CHAPTER 9 Graphics and Animation

Assignment by CSS rule uses the same style tag as in the previous section,
only this time the selector preceding the { } block should be the name of the tag:
✞ �

<head>
<!-- Other head elements go here. -->
<style type="text/css">

p {
border-style: solid

}
</style>

</head>
✝ ✆

Note a key difference between the JavaScript and CSS rule approaches: the
JavaScript approach changes the style for the existing elements at the time the code
is executed. If subsequent JavaScript code creates a new p element and appends it
to the document, that element will not have the assigned style subproperties.2

Other CSS Selectors

Beyond individual property setting and setting by element type, the remaining
mechanisms for modifying CSS visual properties mainly involve the selector that
begins CSS rules. Since our focus here is computer graphics and not web page
authoring, we only summarize them here:

A selector that begins with a period (.), such as .helpbox or .menuitem,
applies to web elements that have been assigned a class attribute:
✞ �

<p class="helpbox">A CSS rule that begins with .helpbox
will affect this p element.</p>

✝ ✆

Multiple selectors separated by commas (,) allow you to apply the same set
of visual properties to distinct groups of elements:
✞ �

p, .helpbox, #mainInstruction {
background-color: rgb(250, 250, 192);
border-style: outset

}
✝ ✆

2There is a JavaScript technique for creating or modifying CSS rules, but we have chosen to

leave that as something for lookup.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 477 — #15
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 477

Just to throw in some new things, note the fairly self-explanatory
background-color property, and how it is set using an rgb expression (one
of many RGB representations that CSS accepts; this version takes color com-
ponent values as integers from 0 to 255).3

Multiple selectors separated by spaces instead of commas constitute contain-
ment instead of a list: a selector of p a, for example, affects only a elements
that are inside p elements. To specify that div elements are contained within
another div that are in turn contained in a top-level div, you would use the
selector div div div.

CSS is, on one level, simple in principle, yet surprisingly deep, powerful, and com-
plex on another. We have attempted to cover the basic mechanisms here; if you are
interested in more, we suggest the official CSS home page for definitive, no-holds-
barred coverage [W3C10]. A quick web search will also reveal a large number of
learning, tutorial, and reference sites.

jQuery’s $

With this wide array of approaches for assigning visual properties, we hope that
some of the motivation and accomplishment behind jQuery (Section 7.5) becomes
clear: thanks to jQuery’s $ function, setting the properties of just the right collec-
tion of elements becomes much simpler to do. This is what effective library design
achieves—it can take an existing mechanism for getting things done and, with the
right functions and objects, make programming such activities easier, faster, and
more powerful.

9.2.3 Visual Properties

At this point, we turn to CSS properties that specifically facilitate visual effects
beyond document layout or user interface appearance. In addition, we will empha-
size CSS property manipulation from JavaScript as opposed to the HTML and
CSS rule approaches seen previously. All examples are designed for the JavaScript
runner page at http://javascript.cs.lmu.edu/runner.

3In yet another pesky detail that we don’t have space to fully address, not all colors can be

represented by all web browsers. For the purposes of this chapter, however, we won’t worry about

this issue.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 478 — #16
✐

✐

✐

✐

✐

✐

478 CHAPTER 9 Graphics and Animation

Size and Spacing

The width and height properties, as you might expect, can set the size of a web
element’s content to something other than its default. Units must be provided
along with the dimensions; we will stick to pixels (px) here and leave you to learn
about other units on your own. Borders also have a size property: border-width.
As with width and height, units are required.

Related to size is the spacing around a web element. Two types of space are
available: margin and padding. Margin refers to the space around an element that is
outside the border, while padding refers to the space between an element’s border
and its content. Since web elements have four sides (top, left, bottom, and right),
there are four properties for each type of spacing: margin-top, margin-left,
margin-bottom, and margin-right for margin, and (obviously enough) padding-top,
padding-left, padding-bottom, and padding-right for padding. “Shortcut prop-
erties” margin and padding are also assignable, to one, two, or four number-plus-
unit expressions separated by spaces: one value expressions set all four sides, two
value expressions set vertical and horizontal spacing, and four-value expressions
can set all four sides to different values in a single assignment.

The following http://javascript.cs.lmu.edu/runner example provides some
code that manipulates these size and spacing properties for the div element whose
id is footer. Note how the overall area that is occupied by an element is ultimately
the combined space determined by width, height, border-width, padding, and
margin. Type this code in and play around (recall, again, the “camel case” rule for
how hyphenated CSS property names are modified when accessed via JavaScript):

✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Fun with sizes and spaces";
footer.style.width = "100px";
footer.style.height = "100px";
footer.style.borderStyle = "outset";
footer.style.borderWidth = "2px";
footer.style.marginLeft = "300px";
footer.style.marginTop = "100px";
footer.style.paddingRight = "50px";
footer.style.paddingBottom = "200px";

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 479 — #17
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 479

Color, Images, Opacity, and Visibility

Color and images form another broad category of CSS properties. Color proper-
ties can be set using expressions ranging from preset keywords (red, blue, black,
white, etc.) to, as you have seen, an rgb triplet. Web elements have three indepen-
dently settable colors: foreground, background, and border. We will let JavaScript
runner code do the talking now:
✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Fun with color";
footer.style.color = "yellow";
footer.style.backgroundColor = "rgb(0, 0, 200)";
footer.style.borderStyle = "inset";
footer.style.borderColor = "rgb(150,150, 150)";

✝ ✆

In addition to solid colors, an element’s background can be set to a preloaded
image file if available. Image files are specified in CSS using a url expression: the
keyword url followed by the image’s, well, URL enclosed in parentheses. Here’s
some more code, using an image that we know exists somewhere on http://

javascript.cs.lmu.edu:
✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Fun with color";
footer.style.height = "128px";
footer.style.color = "yellow";
footer.style.backgroundImage =

"url(http://javascript.cs.lmu.edu/images/bookcover.jpg)";
✝ ✆

Notice how background images repeat by default, and what can be seen de-
pends, on the size of the element. The background-repeat property controls how
(or whether) background image repeats within its web element’s area. Separate
images can also be assigned to borders via the border-image property, using a
similar mechanism. We will leave that for you to look up and discover.

A final, related pair of properties is opacity and visibility. You can set the
opacity of a web element via the opacity property. This is equivalent to the
aforementioned alpha channel with colors. In CSS, this property can take values
from 0 to 1, with 1 indicating total opacity and 0 indicating complete transparency
(i.e., the element is effectively invisible, but still takes up space).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 480 — #18
✐

✐

✐

✐

✐

✐

480 CHAPTER 9 Graphics and Animation

The following example plays with the title/header of the JavaScript runner
page as well as the overall visible portion of the page (i.e., its body element). Note
how opacity is not a matter of “lightness” or “darkness”—it does interact with
overlapping elements, such as the underlying color of the web page. Play with the
code, trying out different color and opacity values, to see how they affect each
other:
✞ �

var header = document.getElementById("header");
document.body.style.backgroundColor = "rgb(0, 80, 0)";
header.style.color = "cyan";
header.style.opacity = "0.5";

✝ ✆

An opacity of 0 makes an element totally transparent, but it remains present
on the web page; that is, it still takes up space. Compare this to the display

property, which determines whether an element is even there (i.e., displayed or
not). A value of none takes the element away from the page’s display. Other values
make it visible, the most common one being block:
✞ �

var header = document.getElementById("header");
header.style.display = "none";

✝ ✆

Note the difference between an opacity of 0 and a display of none.

More Advanced Visual Effects

Borders, solid colors, and images comprise the primary graphics properties of most
web elements. With CSS Level 3 (CSS3) or greater, additional properties become
available that greatly expand the range of possible visuals in “pure” HTML and
CSS (i.e., visuals that a compatible web browser can generate by itself, without
requiring a predrawn image file).

CSS3 is sufficiently new that your web browser may not support the exact
property names given here. If the code examples do not initially work, try ap-
pending a prefix to the property name: Moz for the Mozilla family of web browsers
(Firefox, Flock, etc.), and Webkit for the WebKit family (Safari, Chrome, etc.).
At the HTML attribute and CSS rule level, you will need hyphens before and after
each prefix (e.g., -moz- or -webkit-).

Drop shadows are an easy way to immediately add some dimensionality to
a web page. CSS3 drop shadows consist of four values: the shadow’s color, its

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 481 — #19
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 481

horizontal offset, its vertical offset, and its blur radius. The offsets are the distances
by which the shadow is, well, offset from the web element. The blur radius is
effectively the “softness” of the shadow: the larger, the softer.

The following example gives the footer element of the JavaScript runner page
a relatively soft, grayish drop shadow that falls to the right and below it (note the
expected units for the offsets and blur radius):
✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Getting fancy";
footer.style.boxShadow = "rgb(128, 128, 128) 3px 5px 10px";

✝ ✆

Again, if this code does not work as is, remember to assign the value to
MozBoxShadow for Firefox, Flock, and other Mozilla browsers and to WebkitBoxShadow
for Safari, Chrome, and other WebKit browsers.

The CSS3 border-radius facilitates rounded corners—the effect of which may
be greater than you might expect in terms of eliminating the “boxy” default ap-
pearance of many web elements. In its simplest form, border-radius takes a single
length value. This results in a web element’s corners being drawn as quarters of a
circle whose radius is the given length:
✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Styling outside the box...";
footer.style.borderStyle = "outset";
footer.style.borderWidth = "2px";
footer.style.borderRadius = "10px";

✝ ✆

There’s quite a bit of flexibility here. More complex forms of border-radius
allow for distinct horizontal and vertical radii (thus making the corners appear
as quarter ellipses instead of quarters of a circle) as well as different radii for
each corner. Plus, border-radius and box-shadow play well together. See what
happens when you combine the previous two examples to create a rounded, drop-
shadowed div element.

We wrap up our quick tour of CSS3 with gradient backgrounds—perhaps the
trickiest of the properties we are reviewing, but well worth the learning curve. CSS3
approaches gradient backgrounds as browser-generated images; that is, they can
be used for any property that also takes a url expression for an online image file.
Thus, gradients can be used with background-image, border-image, and other
properties that typically take an image URL.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 482 — #20
✐

✐

✐

✐

✐

✐

482 CHAPTER 9 Graphics and Animation

As with border-radius, the CSS3 expression for a gradient can range from
simple-but-standardized to complicated-but-customized. We will stay with simple
here, leaving the full gamut of options to reading outside of this text:
✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Look ma, no images!";
footer.style.backgroundImage =

"linear-gradient(white, rgb(200, 0, 0), rgb(128, 0, 0))";
document.body.style.backgroundImage =

"linear-gradient(left, lightgray, white)";
✝ ✆

In this simplest form, a gradient is a comma-separated list of colors. The web
element then transitions as smoothly as possible across these colors in a particu-
lar direction (top to bottom) by default. Different directions can be specified by
including a starting point as the first parameter, as seen in the gradient that is
assigned to the document’s body element. In this example, the “starting color”
begins at the left side of the element and travels to the right.

Older web browsers actually take differing expressions for gradients, among
other values and properties that are available only in the latest standards. The
Mozilla/Firefox family of web browsers expects the usual -moz- prefix, such as
"-moz-linear-gradient(white, rgb(200, 0, 0), rgb(128, 0, 0))", while the
WebKit family of web browsers uses the -webkit- prefix and expects the type of
gradient (linear, radial) as a parameter.

Dealing with these backward-compatibility browser variations is straightfor-
ward though verbose: set them all. Web browsers know to ignore a setting or value
that they do not recognize. Thus, a functional workaround until all web browsers
converge upon the latest standards is to set every known property variant (CSS3,
-moz-, -webkit-, and others potentially) and, in the case of gradients, assign
multiple gradient variations. Here is a code example:
✞ �

var footer = document.getElementById("footer");
footer.innerHTML = "Look ma, no images!";

// Mozilla version: WebKit ignores this.
document.body.style.backgroundImage =

"-moz-linear-gradient(left, lightgray, white)";
footer.style.backgroundImage =

"-moz-radial-gradient(25% 50%, circle," +

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 483 — #21
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 483

"white 0%, rgb(200, 0, 0) 50%, rgb(128, 0, 0) 100%)";

// WebKit version: Mozilla ignores this.
document.body.style.backgroundImage =

"-webkit-gradient(linear, 0% 0%, 100% 0%," +
"color-stop(0, lightgray), color-stop(1, white))";

footer.style.backgroundImage =
"-webkit-gradient(radial, 25% 50%, 0, 50% 100%, 750," +
"color-stop(0, white), color-stop(0.5, rgb(200, 0, 0))," +
"color-stop(1, rgb(128, 0, 0)))";

// CSS3 version: the latest browsers take this.
document.body.style.backgroundImage =

"linear-gradient(left, lightgray, white)";
footer.style.backgroundImage =

"radial-gradient(25% 50%, circle," +
"white 0%, rgb(200, 0, 0) 50%, rgb(128, 0, 0) 100%)";

✝ ✆

It’s an intimidating number of settings (and we haven’t even covered all of
them!), but the effort leads to a great deal of flexibility in coloring and/or displaying
web elements—all without running a paint program or image editor.

9.2.4 Absolute Position

When web pages are designed as documents and user interfaces, they tend to follow
default sizing, flow, and positioning rules. This is a good thing for those purposes,
as consistency and device/window independence are paramount for such applica-
tions. In computer graphics, however, we want greater flexibility and sometimes
even complete freedom from those constraints and conventions.

To make DOM elements support pixel-level positioning, do the following:

1. Determine the element that serves as the container for the overall graphics
display.

2. Set the position style property of the container element as relative. This
can be done directly within the HTML as follows:
✞ �

<div style="position: relative">
<!-- Other elements go here. -->

</div>
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 484 — #22
✐

✐

✐

✐

✐

✐

484 CHAPTER 9 Graphics and Animation

Alternatively, position can be set with CSS rules. The web page at http:
//javascript.cs.lmu.edu/basicanimation uses this approach, with the
CSS rules placed in a different file instead of written “inline” within a style

element. This is analogous to using the script tag with an src attribute.

3. Elements within the container element must, in turn, have their position

style property set to absolute.

4. Initial position and size may also be set. The four style properties left,
top, width, and height facilitate this—they mean exactly what their names
say. The positions should be followed by an appropriate unit of measure,
typically pixels (px). The properties left: 0px and top: 0px correspond to
the upper-left corner of the container element. Direct HTML setting of these
properties looks like this:
✞ �

<div style="position: absolute; left: 10px; top: 20px;
width: 100px; height: 50px">

<!-- Elements within the animated element. -->
</div>

✝ ✆

The peceding HTML defines a 100 −×50-pixel object whose top-left corner
is 10 pixels from the left edge of its containing element and 20 pixels from
the top edge. As with any web element, these properties can be set using
CSS rules instead of within the HTML tags.

Alternatively, you can also set right and bottom properties. These reveal a
subtle difference in the way positioning properties behave in CSS: they rep-
resent distances from their respective boundaries. Thus, right: 0px actually
aligns an element’s right side with the right side of its container. Similarly,
bottom: 5px places an element’s bottom at 5 pixels above the bottom of the
containing element.

JavaScript code can, of course, assign these style properties directly, and such
assignments immediately result in the corresponding change on the web page:
✞ �

// Assume that the box variable already refers
// to some absolutely positioned element within
// a relatively positioned one.
box.style.left = "15px";
box.style.top = "25px";

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 485 — #23
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 485

If the box variable refers to the same element defined by the HTML tags
shown above, then this JavaScript fragment immediately moves that element 5
pixels down and to the right.

9.2.5 Case Study: Bar Chart

We conclude our discussion of HTML and CSS computer graphics with a couple
of case studies, starting with a simple bar chart program. The program consists
of a single function, createBarChart, that takes an array of data items, each of
which is an object with color and value properties, and creates a DOM element
that holds a bar chart of the given array. You can find the finished program at
http://javascript.cs.lmu.edu/barchart. Figure 9.4 displays how it looks in
Firefox for Mac OS X, along with its HTML code.

Data items can be specified easily through JavaScript’s object notation:
✞ �

document.body.appendChild(createBarChart(
[{ color: "red", value: 50 },
{ color: "blue", value: 100 },
{ color: "green", value: 75 }]));

✝ ✆

The program was designed in this manner to make it easy to display different
and possibly multiple bar charts without having to touch the main code, which is
encapsulated completely within the createBarChart function. The function itself
creates a self-contained web element that displays the bar chart. It starts simply
enough, creating a div element with its position CSS property set to relative:
✞ �

var chart = document.createElement("div");
chart.style.position = "relative";

✝ ✆

The function then sets the height of the containing element. This height is
determined by the column with the largest value. For a little vertical clearance, 10
pixels are added to the final height:
✞ �

var height = 0;
for (var i = 0; i < data.length; i += 1) {

height = Math.max(height, data[i].value);
}
chart.style.height = (height + 10) + "px";

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 486 — #24
✐

✐

✐

✐

✐

✐

486 CHAPTER 9 Graphics and Animation

FIGURE 9.4

The bar chart case study.

After a little visual styling on the containing element, the columns in the
bar chart are set up. This entails iterating through the array of data items then
creating a column for each data item. That column has a standardized width, while
its height is determined by the value property of the data item and its color is

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 487 — #25
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 487

determined by the color property. Finally, the column is positioned at the bottom
of the containing div:4

✞ �

var dataItem = data[i];
var bar = document.createElement("div");
bar.style.position = "absolute";
bar.style.left = barPosition + "px";
bar.style.width = barWidth + "px";
bar.style.backgroundColor = dataItem.color;
bar.style.height = dataItem.value + "px";
bar.style.borderStyle = "ridge";
bar.style.borderColor = dataItem.color;

bar.style.boxShadow = "rgba(128, 128, 128, 0.75) 0px 7px 12px";
bar.style.borderTopRightRadius = "8px";
bar.style.borderTopRightRadius = "8px";
bar.style.backgroundImage =

"linear-gradient(" + dataItem.color + ", black)";

bar.style.bottom = "0px";
chart.appendChild(bar);

✝ ✆

This case study is not meant to be a completely customizable bar chart pro-
gram, but we hope that it effectively illustrates many of the HTML and CSS
graphics mechanisms that we have shown in this section.

9.2.6 Case Study: Towers of Hanoi Display

This case study represents a possible start for a browser-based Towers of Hanoi
puzzle (discussed in Section 10.2.2). In addition to providing yet another example
of object-based computer graphics in HTML and CSS, this case study shows how
separation between visual properties or presentation and the actual data or model
for the puzzle can be accomplished. This separation facilitates “reformatting” of
the graphics display without having to touch any JavaScript.

The web page can be found at http://javascript.cs.lmu.edu/hanoi. Fig-
ure 9.5 shows the page as rendered by Google Chrome for Mac OS X.

4The actual implementation also accommodates CSS3 variations for certain browsers, but we

redact that here in favor of the standard CSS3 properties and expressions.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 488 — #26
✐

✐

✐

✐

✐

✐

488 CHAPTER 9 Graphics and Animation

FIGURE 9.5

The Towers of Hanoi case study.

As with many of the case studies in this book, we have tried to keep the HTML
minimal (Figure 9.6). Three things are notable though:

Note the link tag that refers to a hanoi.css file.

As before, onload is an event handler, and so the hanoi function call returns
another function. That function is called only when the web page has finished
loading.

The parameters passed to the hanoi function correspond to the number of
tower rings, the number of towers, and the physical height, in pixels, of the
rings.

The separate CSS file facilitates modifications to the colors, borders, shadows,
and other visual properties of the Towers of Hanoi display without touching the
JavaScript code—separation of concerns, yet again. The one visual attribute that
is visible to the hanoi function is the height of each ring. This is done because
tower and ring positioning are dependent on this value, and JavaScript necessarily
handles that, especially if this program were to be made interactive (e.g., movable
rings, implementation of Towers of Hanoi rules, determination of winning/victory
state).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 489 — #27
✐

✐

✐

✐

✐

✐

9.2 HTML and CSS 489

FIGURE 9.6

HTML source for the Towers of Hanoi case study.

Compare the following sample rule from hanoi.css, for example, against what
can be seen in Figure 9.5. It defines the visual properties that are shared by all rings
and supports properties for web browsers that do not yet support standardized
CSS3 property names:

✞ �

.ring, .oddring {
border-radius: 10px;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
box-shadow: rgba(128, 128, 128, 0.5) 2px 4px 7px;
-moz-box-shadow: rgba(128, 128, 128, 0.5) 2px 4px 7px;
-webkit-box-shadow: rgba(128, 128, 128, 0.5) 2px 4px 7px;

}
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 490 — #28
✐

✐

✐

✐

✐

✐

490 CHAPTER 9 Graphics and Animation

Beyond that, the program itself is conceptually simple: it represents the overall
puzzle as an array of “towers,” where each tower (member of the towers array)
is in turn an array of “rings.” The rings are actually div elements, given a class
of ring or oddring. The CSS rules use this class to “format” these div elements
consistently:
✞ �

var towers = [];
for (var i = 0; i < towerCount; i += 1) {

towers.push([]);
}

var ringWidth = (height + 1) * ringHeight;
for (i = 0; i < height; i += 1) {

// Each ring is a div element, and we identify it with an ID.
var ring = document.createElement("div");
ring.id = height - i - 1;
ring.style.width = ringWidth + "px";
ring.style.height = ringHeight + "px";

// For variety, we’ll display odd and even rings differently.
// The class attribute in HTML tags is accessed via the property
// name className in JavaScript.
ring.className = (i % 2 == 0) ? "ring" : "oddring";
towers[0].push(ring);

// The next ring is smaller.
ringWidth -= ringHeight;

}
✝ ✆

Once this array of arrays has been built, the overall containing div element
is created. Tower elements are created and added to the container, followed by
the rings. Finally, in anticipation of some work toward implementing a functional
version of this puzzle, the code that positions each ring is placed in a function:
✞ �

var positionRings = function () {
towerLeft = positionIncrement;
for (i = 0; i < towerCount; i += 1) {

var bottom = towerWidth;
for (j = 0; j < towers[i].length; j += 1) {

ring = towers[i][j];
ring.style.left = // We use parseInt to chop off the units.

(towerLeft - (parseInt(ring.style.width) / 2)) + "px";

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 491 — #29
✐

✐

✐

✐

✐

✐

9.3 Animation in HTML and CSS 491

ring.style.bottom = bottom + "px";
bottom += ringHeight;

}
towerLeft += positionIncrement;

}
};

✝ ✆

Note how the function works by iterating through each tower in the towers

array. For each such tower, the rings are then positioned. Its separation as a func-
tion allows for easy updating of the display in case the rings are moved among
towers.

Review and Practice

1. What is the difference, if any, between an img element and an image that
is assigned to the background-image CSS attribute? Can you tell which is
which in a web browser window, without looking at the source tags?

2. How are the left, top, bottom, right, width, and height properties re-
lated in absolute positioning? Do they interact with each other at all (i.e.,
Are there cases where changing one of these properties automatically affects
another?)?

3. Look up and describe the CSS attributes that are available for web page
text (font styles, sizes, alignment, etc.). Try these out on your own.

9.3 Animation in HTML and CSS

The simplest way to do animation with HTML and CSS is to manipulate the DOM
at intervals. By repeatedly modifying certain visual properties of DOM elements
with a time-based, setInterval event handler, animation can be performed within
a web page. Small changes, made gradually and frequently enough, are interpreted
by the brain as continuous motion or change.

The general approach to web page animation can be summarized as follows:

1. Set up the DOM element to be animated. This primarily entails setting its
properties such that it can be moved or otherwise modified in a fine-grained,
gradual manner.

2. Define a function that serves as the “entry point” into the animation.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 492 — #30
✐

✐

✐

✐

✐

✐

492 CHAPTER 9 Graphics and Animation

3. Within the function, call setInterval with a function that modifies the
DOM element in terms of what should happen in a single animation “frame.”
Smooth movement is typically perceived at or near 30 frames per second; this
translates to a setInterval parameter of 30–40 milliseconds.

4. If desired, set up an event handler or other condition that stops the anima-
tion. Stopping the animation involves holding on to the identifier returned
by setInterval.

http://javascript.cs.lmu.edu/basicanimation illustrates this general approach
as well as the specific concepts described in the remainder of this section.

9.3.1 Constant Velocity

The simplest form of motion animation involves constant velocity ; that is, at each
preset interval throughout the animation sequence, an object moves by a fixed
amount. Diagonal movement can be achieved by modifying both the left and top

style properties at each animation “frame.”
In the http://javascript.cs.lmu.edu/basicanimation example for con-

stant velocity, the animated box cv-box moves left to right and back, at a speed
that can be entered by the user in the cv-velocity text field. For ease of modi-
fication, the interval to use is assigned to a millisecondsPerFrame variable (set
to 30 in the example):
✞ �

var startConstantVelocityAnimation = function () {
// Grab the desired velocity.
var velocity =

parseFloat(document.getElementById("cv-velocity").value);

// Grab the object to animate, and initialize if necessary.
var box = document.getElementById("cv-box");
box.style.left = box.style.left || "0px";

// Start animating.
var intervalID = setInterval(function () {

var newLeft = parseInt(box.style.left) + velocity;
if ((newLeft < 0) || (newLeft > maxLeft)) {

velocity = -velocity;
} else {

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 493 — #31
✐

✐

✐

✐

✐

✐

9.3 Animation in HTML and CSS 493

box.style.left = newLeft + "px";
}

}, millisecondsPerFrame);

// Toggle the start button to stop animation.
setupButton(document.getElementById("cv-button"), "Stop Animation",

function () {
clearInterval(intervalID);

// Toggle the start button to stop animation.
setupButton(document.getElementById("cv-button"),

"Start Animation", startConstantVelocityAnimation);
}

);
};

✝ ✆

Note how the box’s left property is initialized to 0px if it has not already
been set. The function that is repeatedly called by setInterval increments this
property by the desired velocity (assumed to be in pixels per interval), reversing
the direction whenever the box hits the left or right boundary. The px suffix is
appended to the new left property to indicate the desired unit of measure.

The return value of setInterval is saved in the intervalID variable so that
the user can stop the animation, triggered in this example by a click event handler
that calls clearInterval with intervalID.

9.3.2 Fading In and Out

Animation is not just about position; any value that can be changed little by little
over time is a candidate for animation. In the most general case, multiple values
can in fact change in an animation.

As an example of an alternative animation property, we choose the opacity

style property to implement fade-ins and fade-outs. As seen in Section 9.2.3, when
opacity is 0.0, its associated element is completely transparent (invisible). When
it is 1.0, the element is completely opaque. Every value in between represents how
much you can “see through” that element. Fade animations correspond to the
opacity of an object: when it starts out completely transparent or opaque, and as
it appears or disappears, its value is increased or decreased a little at a time.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 494 — #32
✐

✐

✐

✐

✐

✐

494 CHAPTER 9 Graphics and Animation

The fade-in/fade-out example in http://javascript.cs.lmu.edu/

basicanimation manipulates opacity in virtually the same way as a box’s po-
sition: it starts the opacity at an appropriate value then adds to/subtracts from
that opacity over time until it reaches the target value.

Since the page starts with the fade example box being visible, the first effect
that can be tried is the fade-out. The setInterval invocation is shown below; the
key variable is fadeRate, or the degree by which the element gets more transparent
with each frame. Note how it fulfills the same role as velocity when doing motion
animation:

✞ �

var intervalID = setInterval(function () {
// Calculate the new values.
var newOpacity = parseFloat(box.style.opacity) - fadeRate;
if (newOpacity <= 0) {

// Upon reaching maximum transparency, stop the animation and
// toggle the function of the fade button.
newOpacity = 0;
clearInterval(intervalID);
setupButton(document.getElementById("fade-button"),

"Fade In", startFadeInAnimation);
}

box.style.opacity = newOpacity;
}, millisecondsPerFrame);

✝ ✆

Most of the function actually has to do with ending the animation, not the
animation itself! Opacity is decreased by fadeRate at each frame—that’s it. The
web browser takes care of the rest. Since this is a fade-out, we end the animation
when newOpacity reaches or goes below 0. As with motion animation, we end the
animation by calling clearInterval(intervalID), then toggle the fade button
to do a fade-in when it is next clicked.

Fading in is hardly any different: we start the opacity at 0 and increase it
instead, stopping when the opacity reaches 1.0. The code is so similar that we will
leave it for you to infer or just examine online.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 495 — #33
✐

✐

✐

✐

✐

✐

9.3 Animation in HTML and CSS 495

9.3.3 Animating Other Properties

The suite of available CSS properties, some of which were introduced in Sec-
tion 9.2.3, offers a wide selection of animation possibilities. These can be modified
over time via setInterval, individually or in combination, to produce a wide
variety of animation effects:

Since colors (e.g., color, background-color, border-color) can be ex-
pressed in terms of red, green, and blue values, appropriate gradual mod-
ification of these values can produce a variety of color transition effects for
different aspects of a web element.

The width and height properties allow for size animation. Just remember
that, like left, top, right, and bottom, these properties need a unit of
measure, such as px, in order to work properly.

Properties such as border-width, margin, and padding can animate web
element spacing and layout.

Text-related properties, which are not covered in this chapter, can animate
blocks of text, ranging from their font size to their style and color.

In principle, any property that has a visual effect, which can be changed in small
increments over time, is a candidate for animation. Once you have gotten the
general pattern for animation using setInterval and clearInterval, with help
from how functions are objects in JavaScript, setting these up is straightforward
and satisfying.

9.3.4 Ramped (or Eased) Animation

Many systems implement animation through tweening : the user specifies the start
and end states of an animated object (called the object’s key frames) and the
desired duration of the animation, and the software computes the frames in be-
tween. The center of this computation is the tweening function, which, when given
a start state, an end state (or, equivalently, the amount of change in state), the
target duration, and the current time in the animation, returns the intermediate
or “tweened” state that the object should have. The actual tweening algorithm is
then a matter of iterating from time 0 to the total duration, periodically calling

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 496 — #34
✐

✐

✐

✐

✐

✐

496 CHAPTER 9 Graphics and Animation

the tweening function at the current time and setting the animated object’s state
to whatever the tweening function returns.

By encapsulating an animated object’s behavior within a tweening function,
more sophisticated changes such as acceleration, oscillation, or anything else can
be implemented without changing the overall structure of the animation code. The
http://javascript.cs.lmu.edu/basicanimation eased animation example im-
plements “ease in,” “ease out,” and “ease in and out”—acceleration, deceleration,
and symmetrical acceleration followed by deceleration. The tweening functions for
these effects are shown here [Pen06]:

✞ �

var quadEaseIn = function (currentTime, start, distance, duration) {
var percentComplete = currentTime / duration;
return distance * percentComplete * percentComplete + start;

};

var quadEaseOut = function (currentTime, start, distance, duration) {
var percentComplete = currentTime / duration;
return -distance * percentComplete * (percentComplete - 2) + start;

};

var quadEaseInAndOut = function (currentTime, start, distance, duration
) {
var percentComplete = currentTime / (duration / 2);
return (percentComplete < 1) ?

(distance / 2) * percentComplete * percentComplete + start :
(-distance / 2) * ((percentComplete - 1) *

(percentComplete - 3) - 1) + start;
};

✝ ✆

The approach of these functions is to start by determining how far along the
animation we are—done by dividing the current time by the total duration. This
results in a value from 0 to 1.0; effectively the percent complete. When easing in, we
multiply the distance by the square of this value, offset by the start position. When
easing out, we multiply by the negative of the distance since we are decelerating.
Easing in and out divides the overall distance in half, returning the “ease in” value
in the first part of the animation and returning the “ease out” value in the second
part. The functions are quadratic—i.e., they are based on the square of the amount

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 497 — #35
✐

✐

✐

✐

✐

✐

9.3 Animation in HTML and CSS 497

of time that has passed—because simple acceleration in elementary physics affects
an object’s location in that manner.

Note that constant velocity animation is simply a linear tweening function:
the object’s state for a given frame is directly proportional to the number of
elapsed frames. And ultimately, we are not locked in at all, to elementary physics
or otherwise, when it comes to what we do in the tweening function. As long
as the function puts the object in the desired start state at currentTime === 0

and puts the object in the desired end state (or close enough) at currentTime ===

duration, the function can do anything it wants, really. The main condition is that
the “trajectory” of the values returned by the tweening function has a recognizable
smoothness. In other words, it must produce sufficiently small changes over time,
the essence of animation.

As you might have supposed by now, tweening functions can apply to any ani-
matable property, not just movement. Fades, changes in color, changes in size—the
animation possibilities explode when the code is structured around a “pluggable”
tweening function. The results are elegant in design and powerful in functionality,
since JavaScript treats functions as objects and the DOM supports a wide variety
of “tweenable” properties.

If you would like to explore these tweening possibilities further, Robert Penner
has developed a library of tweening/easing functions [Pen06] (the examples shown
here are based on his work), and the Tweener open source project has implemented
these functions in JavaScript and other languages [Twe10].

9.3.5 Declarative CSS Animation

The latest CSS standard supports specific declarative versions of the animation
techniques shown in this section [CSS09a, CSS09b]. By “declarative,” we mean
that a web page can simply state—“declare”—that certain animations should take
place under certain circumstances. Standards-compliant web browsers can take
those declarations and act upon them without needing further code from the web
page. In a sense, declarative CSS animations focus on what should happen without
having to specify how it happens.

Since this type of animation does not involve JavaScript at all, we will cover
it no further than through a brief example. The simplest form of declarative CSS
animation is the transition—tweening that occurs when an element changes from
one style to another. Such transitions involve the property to be animated, the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 498 — #36
✐

✐

✐

✐

✐

✐

498 CHAPTER 9 Graphics and Animation

duration of the animation, and the timing function (equivalent to the tweening or
easing functions from the previous section). The following code demonstrates this:

✞ �

<!doctype html>
<html>
<head>
<meta charset="UTF-8"/>
<title>Declarative CSS Animation Demonstration</title>
<style>
span {
font-size: 48px;
transition: text-shadow 2s ease;
-moz-transition: text-shadow 2s ease;
-webkit-transition: text-shadow 2s ease;

}

span:hover {
text-shadow: 0px 0px 18px red;

}
</style>

</head>
<body>
Follow the
unearthly glow!

</body>
</html>

✝ ✆

Declarative functionality is generally simpler and less error-prone than actual
programmed functionality, but this does not mean the programming goes away. It
simply means the software has been able to structure its programmed components
well enough that “declaring” what to do is easily mapped to the code or func-
tions that show how it is done. Thus, learning how to program these effects (i.e.,
the subsections before this one) remains relevant even as declarative approaches
become more sophisticated—because ultimately, someone has to get around to
programming all of those declared behaviors!

Review and Practice

1. What role does setInterval play in web animation?

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 499 — #37
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 499

2. The setInterval function returns an identifier that can be used to refer to
the particular repetition that the function call initiated. Name a situation
in which knowing this identifier can prove useful.

3. Is it possible to write a tweening function as described in Section 9.3.4 such
that the tweened object appears to move back and forth over time? Why
or why not? Test your answer by downloading and modifying the code in
http://javascript.cs.lmu.edu/basicanimation.

4. Does declarative CSS animation obviate the need to know how to program
animation effects directly? Why or why not?

9.4 The Canvas Element

For web browsers that support it, the canvas element provides web pages with a
dynamically paintable area. JavaScript applications have full, pixel-level control of
canvas elements and work with them through functions that provide very similar
functionality to image editing software. One can think of canvas as a mechanism
for “scripted painting.” An extensive online tutorial for the canvas element can
be found in [Moz09], while [WW10] provides the latest version of its specification.

9.4.1 Instantiating a Canvas

As with all web page elements, canvas can be created either through tags in HTML
or through explicit creation and inclusion in the document by JavaScript code. The
canvas element has two distinct attributes—width and height—both expressed
in pixels. When left unspecified, a canvas defaults to a width of 300 pixels and a
height of 150 pixels.

An HTML canvas tag looks like this:
✞ �

<canvas width="200" height="200">
A canvas element should appear here, in browsers
that support it.
</canvas>

✝ ✆

This width and height represents the drawable region of the canvas, not its
visible size. Thus, <canvas width="200" height="200"> represents an area that
is evenly divided into 200 columns across and 200 rows down, regardless of how big

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 500 — #38
✐

✐

✐

✐

✐

✐

500 CHAPTER 9 Graphics and Animation

that canvas appears on the web page. If CSS or other mechanisms change a canvas

element’s presentation or layout size to something other than its designated width

and height, then its contents are scaled up or down to that size.
Note the role of the text between the start and end tags: browsers that do not

support the canvas element will not recognize the canvas tags and display any
text in between. You can use this behavior to give the user some kind of warning
or notice that the web page needs canvas element support in the web browser.
Web browsers that do support canvas will not display this text, since there would
be a canvas right in its place!

In pure JavaScript, creating and configuring a canvas element is very similar
to most other elements:

✞ �

var canvas = document.createElement("canvas");
canvas.innerHTML = "A canvas element should appear here," +

" in browsers that support it.";
canvas.width = 200;
canvas.height = 200;
document.body.appendChild(canvas);
// ...or wherever else you’d like the canvas to go.

✝ ✆

9.4.2 The Rendering Context

The bridge between your JavaScript code and what users see in a canvas element
is the drawing, graphics, or rendering context. This concept is in fact common to
many programmatic computer graphics environments.

If canvas is a programmer’s version of an image-editing or paint application,
then a rendering context is the programmer’s analog for the state of that applica-
tion: the current tool, the selected color, the current font, etc. Typical interaction
with a graphics context involves setting relevant values such as color, drawing style,
and font. An actual drawing operation can then be requested, and that operation is
performed using those values. These operations then result in user-visible changes
to what’s in the canvas.

In a design choice that should no longer be surprising, the rendering context is
represented as a JavaScript object. It is acquired through the getContext function
of the canvas element. getContext requires one parameter: the type of context

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 501 — #39
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 501

that is being requested. This section focuses on the 2D rendering context (indicated
by passing "2d" to getContext); see Section 9.6 for its 3D counterpart:
✞ �

// Assume that the canvas variable holds a valid canvas, whether
// created manually, accessed via document.getElementById, or obtained
// by any other method.
var renderingContext = canvas.getContext("2d");

✝ ✆

Once the code has a rendering context, drawing can begin in earnest. This
small program paints a red 50 × 25 rectangle with an upper-left corner located at
(5, 5) of whatever canvas element provided the rendering context referenced by
the renderingContext variable.5

✞ �

renderingContext.fillStyle = "rgb(255, 0, 0)";
renderingContext.fillRect(5, 5, 50, 25);

✝ ✆

This program illustrates the general pattern for canvas use: set up the render-
ing context then call a drawing function. The setup here involves a single property,
fillStyle. The fillStyle determines how drawn items are, well, filled when
drawn. In the example, this is a solid swath of full-intensity red.

The drawing function used here is fillRect; it draws a solid rectangle, ac-
cording to the current value of the fillStyle property. For arguments, fillRect
expects the x- and y-coordinates of the rectangle’s upper-left corner followed by
its width and height.

fillStyle can also take colors that have alpha transparency; use rgba for
those. Add the following two lines to draw a half-opaque green rectangle on top of
the red rectangle:
✞ �

renderingContext.fillStyle = "rgba(0, 255, 0, 0.5)";
renderingContext.fillRect(30, 20, 40, 50);

✝ ✆

The canvas rendering context has a wide variety of properties, some more of
which you will see in later sections. You may find that multiple properties need to
be set at any given time, but you will want to revert to whatever values they had

5You may choose to run this code on a canvas you created manually (i.e., the last code sample

from the previous section), or you may prefer to execute it from an HTML file with a canvas tag.

To emphasize the interchangeability of these approaches, we leave that choice to you.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 502 — #40
✐

✐

✐

✐

✐

✐

502 CHAPTER 9 Graphics and Animation

soon after. The save and restore functions are good for those: call save when
you want to “mark” the rendering context’s properties at a certain point, change
the rendering context as needed, then call restore when done. This is particularly
useful if you have separated your drawing routines into functions:

✞ �

var drawingFunction = function (renderingContext) {
renderingContext.save();
/* Do anything you want; change anything you want. */
renderingContext.restore();
/* It’s as if nothing has changed! */

};
✝ ✆

9.4.3 Drawing Rectangles

In addition to fillRect, the strokeRect and clearRect functions are variations
on the theme of painting rectangles. strokeRect paints only an “outlined” or
“bordered” rectangle, while clearRect performs the equivalent of “erasing” a
rectangle.

The following program presumes an existing canvas variable that holds a
canvas element and shows these three functions in action. For reference, Figure 9.7
illustrates what you should see.

✞ �

var renderingContext = canvas.getContext("2d");
renderingContext.fillStyle = "rgb(255, 0, 0)";
renderingContext.fillRect(10, 10, 100, 50);
renderingContext.fillStyle = "rgba(0, 255, 0, 0.5)";
renderingContext.fillRect(50, 20, 100, 50);
renderingContext.clearRect(20, 15, 75, 40);
renderingContext.strokeRect(25, 25, 75, 40);

✝ ✆

Properties other than fillStyle influence the appearance of a painted rect-
angle, such as strokeStyle, globalAlpha, lineWidth, lineCap, lineJoin, and
miterLimit. Feel free to look up and experiment with these, to see how they
change the appearance of a drawn rectangle.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 503 — #41
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 503

FIGURE 9.7

Fun with canvas rectangles.

9.4.4 Drawing Lines and Polygons

If canvas only did rectangles, then it would not functionally surpass HTML/CSS.
Virtually everything you can do with a canvas rectangle can be done with div

elements. With paths, however, canvas begins to truly shine.
A path is essentially a sequence of points. Points may or may not be connected

by lines—it depends on how they are specified. As with the rectangle drawing
functions, all of this action centers around a rendering context. A new path is
started by calling beginPath. Functions such as moveTo, lineTo, arc, and others
then specify points on that path. An optional closePath call ensures that the last
point specified connects a line to the first point specified. Calls to stroke and fill

either draw the lines in the current path or paint in the region delineated by the
lines in that path, respectively. The general pattern for path drawing code thus
looks like this:
✞ �

var renderingContext = canvas.getContext("2d");
renderingContext.beginPath();
/* Specify your points. */
/* Optional. */ renderingContext.closePath();
/* One or both: */
renderingContext.stroke();
renderingContext.fill();

✝ ✆

A variety of functions aids in specifying points. The simplest one, conceptually,
is moveTo. The moveTo function takes 2D coordinates (x, y) and adds those to
the path, without doing any drawing. Calling moveTo is like lifting a pencil off the
paper and placing it at the location you specify.

The lineTo function, in turn, moves the “pencil” without lifting it, thus draw-
ing a line connecting the current and new locations. A stroke call then draws those

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 504 — #42
✐

✐

✐

✐

✐

✐

504 CHAPTER 9 Graphics and Animation

renderContext.stroke();

FIGURE 9.8

A rudimentary path example.

lines, while a fill call paints in the region enclosed by those lines. The following
code, for example, paints a cyan right triangle with a black outline (Figure 9.8):
✞ �

var renderingContext = canvas.getContext("2d");
renderingContext.fillStyle = "rgb(0, 255, 255)";
renderingContext.beginPath();
renderingContext.moveTo(10, 10);
renderingContext.lineTo(110, 10);
renderingContext.lineTo(110, 60);
renderingContext.closePath();
renderingContext.fill();
renderingContext.stroke();

✝ ✆

Typing, running, and experimenting with this code (using whatever mechanism
you prefer for creating the canvas element) gives you a good feel for how paths
work. Specifically, try the following changes, and see if you can predict the outcome:

Remove the closePath function call.

Interchange the fill and stroke calls.

Change the fillStyle and strokeStyle rendering context properties.

Add more moveTo and lineTo calls after calling fill or stroke, then call
fill or stroke again.

Insert a new beginPath function call (with a new initial moveTo call, if
necessary) before the moveTo and lineTo calls added above.

Mix and match these changes as you like. Consider your experimentation time
complete when you can accurately predict what you will see for each permutation
you make.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 505 — #43
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 505

9.4.5 Drawing Arcs and Circles

Arcs and curves are part of canvas’s path functionality. For circles and arcs, use
the arc function. The arc call of arc(x, y, radius, startAngle, endAngle,

anticlockwise) has, as its parameters

the center of the arc, (x, y),

the radius of the arc,

the start and end angles of the arc (startAngle, endAngle), given in radians,
and

whether these angles are connected clockwise (anticlockwise === false)
or counterclockwise (anticlockwise === true).

Calling arc is equivalent to calling lineTo(x, y) and then drawing the arc, so
call moveTo(x, y) first if you want the arc or circle to stand alone. If the use of
radians gives you high school trigonometry flashbacks, the Math object defines a
PI property, so you can convert from degrees to radians with a minimum of fuss
using the expression (Math.PI / 180) * degrees. Note that a full circle or disc
can be drawn by having a startAngle of 0 and an endAngle of Math.PI * 2.

As with lineTo, arc by itself does not draw anything. Finish things off with
stroke to draw the curve defined by the arc, or with fill to draw a solid “pie
slice.”

The following example, adapted from [Moz09], provides a nice selection of what
arc can do (you should get something that looks like Figure 9.9). Make sure to

FIGURE 9.9

Variations on a canvas arc theme [Moz09].

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 506 — #44
✐

✐

✐

✐

✐

✐

506 CHAPTER 9 Graphics and Animation

run this on a canvas element with a width of at least 150 and a height of at least
200 (can you see why?):
✞ �

var renderingContext = canvas.getContext("2d");
for (var i = 0; i < 4; i += 1) {

for (var j = 0; j < 3; j += 1) {
renderingContext.beginPath();
var x = 25 + (j * 50);
var y = 25 + (i * 50);
var radius = 20;
var startAngle = 0;
var endAngle = Math.PI + ((Math.PI * j) / 2);
var anticlockwise = ((i % 2) === 0) ? false : true;

renderingContext.arc(x, y, radius,
startAngle, endAngle, anticlockwise);

if (i > 1) {
renderingContext.fill();

} else {
renderingContext.stroke();

}
}

}
✝ ✆

Once you have this working, as given, try the following modifications:

Change the value of radius.

Change the constants in the expressions for x and y.

Remove the beginPath call at the beginning of the inner loop.

Replace the if statement at the end of the inner loop with just a call to
fill or stroke, also without beginPath.

Interchange the value of the anticlockwise variable.

Add a closePath function call right before calling stroke.

As before, consider your understanding complete if you can foresee the visual
results of each code change you make.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 507 — #45
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 507

9.4.6 Drawing Bézier and Quadratic Curves

The final path-specific functions involve Bézier curves, of the quadratic
quadraticCurveTo and cubic bezierCurveTo varieties. The mathematics of these
curves is beyond the scope of this book, and admittedly, they are easier to work
with in interactive draw programs, which allow you to manipulate them in real
time.

Suffice it to say that both curves start at the current point in the path (e.g.,
a point set by moveTo) to a new point. In addition, quadraticCurveTo takes the
coordinates of one control point (cp1x, cp1y) while bezierCurveTo takes two
control points (cp1x, cp1y, cp2x, cp2y). In both cases, the control point coor-
dinates come first, with the destination endpoint given as the last two parameters.

The following example draws a rectangle, with quadratic Bézier curves drawn
over it. The vertices of the rectangle serve as control points for quadratic curves,
with their adjacent corners serving as endpoints. Run this code on a canvas with
a width of at least 200 and a height of at least 100:
✞ �

var renderingContext = canvas.getContext("2d");
renderingContext.strokeStyle = "rgba(0, 0, 0, 0.25)";
renderingContext.lineWidth = 0.5;
renderingContext.strokeRect(20, 20, 160, 60);

renderingContext.strokeStyle = "rgb(128, 0, 0)";
renderingContext.lineWidth = 1.0;

renderingContext.beginPath();
renderingContext.moveTo(20, 20);
renderingContext.quadraticCurveTo(180, 20, 180, 80);
renderingContext.moveTo(180, 20);
renderingContext.quadraticCurveTo(180, 80, 20, 80);
renderingContext.moveTo(180, 80);
renderingContext.quadraticCurveTo(20, 80, 20, 20);
renderingContext.moveTo(20, 80);
renderingContext.quadraticCurveTo(20, 20, 180, 20);
renderingContext.stroke();

✝ ✆

The next code fragment illustrates an alternative path to the one above. Ad-
jacent vertices of the rectangle in this example serve as control points for cubic
Bézier curves, with their opposite corners serving as endpoints. Since the resulting

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 508 — #46
✐

✐

✐

✐

✐

✐

508 CHAPTER 9 Graphics and Animation

FIGURE 9.10

Quadratic and Bézier curves.

curves are harder to tell apart, they are done as separate paths so that different
colors can be used to draw them. This code also needs a canvas with a width of at
least 200 and a height of at least 100. Figure 9.10 illustrates how these quadratic
and Bézier curve code examples should look.
✞ �

renderingContext.strokeStyle = "rgb(128, 0, 0)";
renderingContext.beginPath();
renderingContext.moveTo(20, 20);
renderingContext.bezierCurveTo(180, 20, 180, 80, 20, 80);
renderingContext.stroke();

renderingContext.strokeStyle = "rgb(0, 128, 0)";
renderingContext.beginPath();
renderingContext.moveTo(180, 20);
renderingContext.bezierCurveTo(20, 20, 20, 80, 180, 80);
renderingContext.stroke();

renderingContext.strokeStyle = "rgb(0, 0, 128)";
renderingContext.beginPath();
renderingContext.moveTo(180, 80);
renderingContext.bezierCurveTo(180, 20, 20, 20, 20, 80);
renderingContext.stroke();

renderingContext.strokeStyle = "rgb(128, 0, 128)";
renderingContext.beginPath();
renderingContext.moveTo(180, 20);
renderingContext.bezierCurveTo(180, 80, 20, 80, 20, 20);
renderingContext.stroke();

✝ ✆

The canvas element’s path-based functions provide a powerful library of rou-
tines for drawing almost any geometric entity. While the functions are object-based
(“arc,” “line,” “quadratic curve,” etc.), canvas is ultimately pixel-oriented; there-

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 509 — #47
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 509

fore, once these paths are drawn, it is not possible to go back and modify them,
the way one can set a new position for a div element. Once drawn or filled, the
shapes become pixels and can only be manipulated as pixels from that point on.

If the ability to draw lines, arcs, circles, and curves does not seem to make
up for the loss of object-based modification, the other broad canvas functionality
should: the ability to manipulate images.

9.4.7 Working with Images

The canvas element can draw preexisting image files in a variety of ways. If you
find that the CSS variations for displaying an img element start falling short of
your vision, displaying the image in a canvas element may be the way to go.

What canvas does not do is load the image data itself. Why replicate that
work, after all, when the img element and other JavaScript objects can do it
already? So that’s where we start.

Specifying an Image Source

Mechanisms for bringing an image into a canvas element include, but are not
limited to:

An img element on the web page. This can be accessed by id or through any
other means of “walking” through the DOM.

Another canvas element on the web page. Same here, you can use any ap-
proach to get to that element.

An Image object created on the fly. But make sure to wait until it is fully
loaded before using it. See the upcoming Implementation Notes section for
more details on this.

Placing the content of one canvas onto another is particularly powerful. You can
use that method for magnified or thumbnail views, for example. Tiles, overlays,
and other visual effects constitute other possibilities.

If an img element is to be used solely as a “source image” for a canvas el-
ement, you can load it without its being visible on the web page by setting its
style.display property (Section 9.2.3):

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 510 — #48
✐

✐

✐

✐

✐

✐

510 CHAPTER 9 Graphics and Animation

✞ �

<!--
For canvas use only. Note the "display: none" property and the
assigned id attribute.

-->

✝ ✆

Drawing an Image

With any of the aforementioned image sources in hand, drawing them on a canvas

element is a matter of calling one of these rendering context functions:

drawImage(image, dx, dy) draws the image such that its upper-left corner
is located at (dx, dy) on the canvas.

drawImage(image, dx, dy, dw, dh) scales the image to width dw and
height dh.

drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh) draws a slice or
subimage of the original image with its upper-left corner at the location
(dx, dy), width dw, and height dh. The slice to be drawn has its left corner
at (sx, sy) on the original image, with width sw and height sh, again on
the original image.

Figure 9.11, which is part of the official canvas specification [WW10], summarizes
these image-drawing options.

A sample page at http://javascript.cs.lmu.edu/canvas-image illustrates
canvas image drawing along with other canvas functions that were seen previously.
For fun, we have thrown in some rendering context properties that you have not
seen yet but whose purpose should be fairly apparent. Figure 9.12 illustrates what
you should see.

The page, which illustrates a hypothetical game in which images of eyes are
matched, uses two invisible img elements as image sources:
✞ �

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 511 — #49
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 511

sx

sw

sh

dh

dw

dy

dx

sy

Source Image

Destination Canvas

FIGURE 9.11

drawImage variations [WW10].

FIGURE 9.12

Canvas image drawing and other functions/properties.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 512 — #50
✐

✐

✐

✐

✐

✐

512 CHAPTER 9 Graphics and Animation

Once the page has loaded, the original images are drawn and scaled on the
canvas, with the eyes in each image drawn individually, thanks to the slicing variant
of the drawImage function. The code for drawing the images code, along with
variable initialization and rendering context property settings, is shown here:
✞ �

var canvas = document.getElementById("canvas");
var girlImage = document.getElementById("girl-image");
var boyImage = document.getElementById("boy-image");

var renderingContext = canvas.getContext("2d");
renderingContext.shadowOffsetX = 0;
renderingContext.shadowOffsetY = 4;
renderingContext.shadowBlur = 16;

renderingContext.shadowColor = "rgba(120, 120, 255, 0.5)";
renderingContext.drawImage(boyImage, 262, 12, 240, 320);
renderingContext.drawImage(boyImage, 177, 510, 100, 60,

273, 400, 100, 60);
renderingContext.drawImage(boyImage, 380, 488, 100, 60,

142, 400, 100, 60);

renderingContext.shadowColor = "rgba(255, 120, 120, 0.5)";
renderingContext.drawImage(girlImage, 12, 12, 240, 320);
renderingContext.drawImage(girlImage, 250, 365, 100, 60,

400, 400, 100, 60);
renderingContext.drawImage(girlImage, 445, 315, 100, 60,

12, 400, 100, 60);
✝ ✆

To emphasize that only a canvas element can facilitate this visual using just
the two img elements, translucent green triangles indicate which eye is which. The
property setup and the code for the first triangle are shown here:
✞ �

renderingContext.shadowColor = "rgba(120, 120, 120, 0.5)";
renderingContext.shadowOffsetX = 4;
renderingContext.fillStyle = "rgba(80, 200, 80, 0.5)";
renderingContext.beginPath();
renderingContext.moveTo(12, 400);
renderingContext.lineTo(112, 400);
renderingContext.lineTo(166, 117);
renderingContext.fill();

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 513 — #51
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 513

Implementation Notes

Image data can sometimes be large enough to require consideration of something
we have ignored so far: download time. Note that images cannot be drawn until
the image data have actually arrived at the web browser. For img elements in a
web page, waiting for a load event before doing the heavy graphics lifting does
the trick. For dynamically created Image objects, such as:
✞ �

var image = new Image();
image.src = "/images/bookcover.jpg";

✝ ✆

make sure to wait until the image file has fully downloaded before you use it
on a canvas. Fortunately, this is easy—Image objects can report the load event,
indicating when their image data have been completely read:
✞ �

var image = new Image();
image.onload = function () {

var renderingContext = canvas.getContext("2d");
renderingContext.drawImage(image, 0, 0);

};
image.src = "/images/bookcover.jpg";

✝ ✆

Note how the event handler is assigned before the src property. This ensures
that the function does get called when image loading is complete.

A self-contained example, written for the JavaScript runner page at http:

//javascript.cs.lmu.edu/runner, is shown here:
✞ �

var canvas = document.createElement("canvas");
canvas.width = 512;
canvas.height = 512;
document.body.appendChild(canvas);

var image = new Image();
image.onload = function () {

var renderingContext = canvas.getContext("2d");
renderingContext.drawImage(image, 0, 0);

};
image.src = "/images/bookcover.jpg";

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 514 — #52
✐

✐

✐

✐

✐

✐

514 CHAPTER 9 Graphics and Animation

9.4.8 Transformations

Suppose you needed to draw a particular visual multiple times on a canvas el-
ement. Congratulations if your first thought was to place that code inside a
function—your programming instincts are showing! Here, for example, is a func-
tion that draws a basketball. It takes a rendering context as an argument, so it
can be used on any canvas on the web page. Note also how we are throwing in
a few more rendering context possibilities that you have not seen before; by now
you should be able to generally infer what’s happening, and if not, you should be
able to look them up to get the details:

✞ �

var drawBasketball = function (renderingContext) {
renderingContext.save();
var gradient = renderingContext.createRadialGradient

(-15, -15, 5, 15, 15, 75);
gradient.addColorStop(0, "rgb(255, 130, 0)");
gradient.addColorStop(0.75, "rgb(128, 65, 0)");
gradient.addColorStop(1, "rgb(62, 32, 0)");
renderingContext.fillStyle = gradient;

renderingContext.beginPath();
renderingContext.arc(0, 0, 50, 0, 2 * Math.PI, true);
renderingContext.fill();

renderingContext.strokeStyle = "black";
renderingContext.lineWidth = 1;
renderingContext.beginPath();
renderingContext.moveTo(0, -49);
renderingContext.bezierCurveTo(30, -35, 30, 35, 0, 49);
renderingContext.moveTo(-49, 0);
renderingContext.bezierCurveTo(-35, -30, 35, -30, 47, -15);
renderingContext.moveTo(-35, 35);
renderingContext.bezierCurveTo(0, -30, 50, -20, 45, 20);
renderingContext.moveTo(-28, -40);
renderingContext.bezierCurveTo(10, -35, 25, -35, 29, -40);
renderingContext.stroke();
renderingContext.restore();

};
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 515 — #53
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 515

Note how most of the function’s code is “bracketed” between save and restore

function calls. This is a good graphics programming habit, as it ensures that the
state of the system prior to calling your function is preserved after your function
returns. It is the computer graphics equivalent of “leave things the way you found
them.”

You might also have noticed that the basketball is centered at (0, 0); it was
easier to figure out the coordinates of the various points in this ball with (0, 0)

as a reference. However, calling this function as is would produce the image shown
in Figure 9.13.

One might be tempted to add x and y parameters to the function, representing
the desired center of the basketball, then adjust all of the values according to x

and y. But there are other reasonable variations to this function: we may want
basketballs of different sizes, or we may want to rotate the orientation of the ball.
Adding more and more parameters to this function to represent size and rotation,
plus the needed adjustments to the drawing routines to accommodate such argu-
ments, would turn this function’s code into a morass of variables, arithmetic, and
incomprehensibility.

There must be an easier way—and there is: transformations. A transformation
is a manipulation of the coordinate space within which points are being drawn. The
points are positioned relative to the transformed space, meaning that, depending
on the current transformation, the same code can produce different visual results.

FIGURE 9.13

A naïve call to the drawBasketball function.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 516 — #54
✐

✐

✐

✐

✐

✐

516 CHAPTER 9 Graphics and Animation

There are three basic transformations, each implemented by a different ren-
dering context function:

translate(x, y) moves the origin (0, 0) of the canvas element’s coordi-
nate space by (x, y). All points are then positioned as offsets from the new
“origin.”

rotate(angle) turns the axes of the coordinate space—i.e., the left/right
direction (x-axis) and the up/down direction (y-axis) by the given angle.
The vertical and horizontal can thus become diagonal, and all points specified
after a rotation are drawn relative to this new vertical/horizontal orientation.

scale(x, y) resizes the dimensions of the coordinate space by the given
scale factors x and y. Thus, a unit of 1 grows or shrinks by this scale factor.

The beauty of transformations is that they accumulate. For example, calling translate(5,
10) followed by translate(3, -2) results in (0, 0) being ultimately located at
(8, 8). The exact mathematics that defines how transformations behave is stan-
dard issue for a computer graphics course; look there for those computational
details. For the purposes of this discussion, the intuitive/visual perspective will
suffice.

Now, back to our basketball example. With transformations in our tool belt, we
can write code that looks like the following to produce what you see in Figure 9.14
(the code assumes a canvas that is at least 550 units wide and 350 units high):
✞ �

var renderingContext = canvas.getContext("2d");
var xStep = 25, yStep = -100;

// Start the ball at the bottom-left of the canvas.
renderingContext.translate(50, 300);
for (var i = 0; i < 19; i += 1) {

drawBasketball(renderingContext);
// Move the ball by the current step values.
renderingContext.translate(xStep, yStep);
yStep += 25;

// Check to see if the ball needs to bounce.
if (yStep > 100) {

yStep = -100;
}

}
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 517 — #55
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 517

FIGURE 9.14

Transformations on a basketball, part 1.

We may feel like being clever by trying to rotate the ball a little each time we
display it. We might also feel like scaling the ball along the vertical direction to
convey the impression that it compresses slightly after a bounce. We may then ini-
tially modify our code as shown (asterisks indicate the specific additions/changes):
✞ �

var renderingContext = canvas.getContext("2d");
var xStep = 25, yStep = -100;

// Start the ball at the bottom-left of the canvas,
* // and compressed vertically due to a bounce.
renderingContext.translate(50, 300);

* renderingContext.scale(1, 0.5);
for (var i = 0; i < 19; i += 1) {

drawBasketball(renderingContext);
* // Rotate and scale the ball.
* renderingContext.rotate(10 * Math.PI / 180); // 10 degrees.
* renderingContext.scale(1, 1.1);

// Move the ball by the current step values.
renderingContext.translate(xStep, yStep);
yStep += 25;

// Check to see if the ball needs to bounce.
if (yStep > 100) {

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 518 — #56
✐

✐

✐

✐

✐

✐

518 CHAPTER 9 Graphics and Animation

yStep = -100;
}

}
✝ ✆

Disappointingly, however, this code produces Figure 9.15.
What went wrong? The problem is that this code neglects how transformations

“add up.” Remember that transformations are cumulative. Just as each translate

call moves the origin relative to where it already was, based on prior translates,
so do rotates and scales. Thus, each subsequent rotation not only rotated the
ball itself, but also its position relative to the prior origin. Ditto with the scaling.

The fix for this can be found in functions that you have already seen: save and
restore. First off, the current transformation is part of the rendering context’s
state, and is thus preserved by save and restore alongside the other properties
that you have seen. Second, save and restore are themselves cumulative: they
form a stack of rendering context states, such that multiple calls to save each pro-
duce a distinct “marker” for how the rendering context was at that time. Matching
calls to restore retrieves each state in the reverse order. It’s like having multiple
undos and redos on a typical computer application.

By always “resetting” the current transformation to a previous state, we can
perform our rotates and scales, which are relative to just the ball, outside of the
translates. However, this must change the values that we send to our transfor-
mations. Instead of increments, we must set them to “absolute” values—that is,

FIGURE 9.15

Transformations on a basketball, part 2.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 519 — #57
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 519

FIGURE 9.16

Transformations on a basketball, part 3.

values that are not relative to each other, but are based solely on each iteration of
the for loop.

Figure 9.16 illustrates what we want, as produced by the following codee.
This finished version of the program can be found as a complete web page at
http://javascript.cs.lmu.edu/canvas-transforms.
✞ �

var renderingContext = canvas.getContext("2d");
var xStep = 25, yStep = -100;

// We now have variables to represent the absolute position,
// rotation, and scaling of the ball.
var x = 50, y = 300, angle = 0;
var compression = 0.5;

// Start the ball at the bottom-left of the canvas.
for (var i = 0; i < 19; i += 1) {

// Always return to the same state after each iteration.
renderingContext.save();

// Move the ball to the current position.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 520 — #58
✐

✐

✐

✐

✐

✐

520 CHAPTER 9 Graphics and Animation

renderingContext.translate(x, y);

// Scale and rotate the ball.
renderingContext.scale(1, compression);
renderingContext.rotate(angle);

// *Now* draw.
drawBasketball(renderingContext);

// Calculate the new position, rotation, and scale.
x += xStep; y += yStep; yStep += 25;
angle += 10 * Math.PI / 180; // 10 degrees.
compression += (compression <= 0.9) ? 0.1 : 0;

// Quick check to see if the ball has hit the "floor."
// This results in a "bounce."
if (y + yStep > 300) {

compression = 0.5;
y = 300; yStep = -100;

}

renderingContext.restore();
}

✝ ✆

At this point, if you haven’t done so already, you will want to try transfor-
mations out for yourself. You can download the self-contained code from http:

//javascript.cs.lmu.edu/canvas-transforms and play with the transforma-
tion code in there: make it move differently, make it rotate faster or in a different
direction, resize the ball differently, etc. Or, you can write something totally new
from scratch. It is fair to say that, more than anything you have seen about the
canvas element so far, it is the use of transformations that benefits the most from
practice and experience.

When, one day, you have learned about the underlying mathematics that pow-
ers transformations, you will want to look up the transform and setTransform

functions. These functions allow the specification of transformations in their most
general form, allowing you to manipulate what is drawn beyond what translate,
rotate, and scale provide.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 521 — #59
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 521

9.4.9 Animation

The broad strokes of canvas animation—or any JavaScript animation, for that
matter—do not actually differ much from what is described in Section 9.3. You still
need to plan out the incremental modifications that are needed for each “frame,”
and you need to make these modifications rapidly and repeatedly, typically us-
ing setInterval. What’s different with a canvas element corresponds to what’s
different between pixel-based and object-based graphics: instead of modifying the
properties of discrete objects, the code needs to redraw the entire canvas at each
“frame.”

As mentioned before, canvas element drawing functions such as fillRect,
arc, drawImage, and others do not actually create distinct rectangles, curves, or
other visible shapes. They merely “paint” the individual pixels that correspond to
these objects. Once called, you are left with the canvas element again—no more,
no less. Animating a canvas element thus involves

planning the data structure(s) for your animated scene, such that it can be
drawn in its entirety within a single function,

writing a “new frame” function that modifies your data structure(s) to reflect
advancement to the next state in the animated sequence then repaints the
affected canvas element, and

calling setInterval so that it repeatedly calls the “new frame” function at
a sufficient frequency (at least 30 frames per second).

Note how the techniques for updating your scene—constant velocity, ramped/eased
change, etc.—remain the same. It is only the display mechanism that changes
slightly, again due to the canvas element’s “all or nothing” nature.

The code at http://javascript.cs.lmu.edu/canvas-animated applies these
principles—and it’s based on the transformation example from the previous sec-
tion! The key difference is that, instead of a for loop that draws each basketball
instance on top of the prior basketballs, we have instead a nextFrame function
that clears the canvas element first, then draws the basketball and updates its
position, rotation, and scale. A setInterval call sets up the repeated invocation
of nextFrame at a sufficient frequency:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 522 — #60
✐

✐

✐

✐

✐

✐

522 CHAPTER 9 Graphics and Animation

✞ �

/* Note how, aside from the conversion of the for loop into a
nextFrame function, the code has not otherwise changed much
from the transformation example. The only other differences
are adjustments to the values: they make smaller changes to
accommodate the frequency with which the canvas is redrawn. */

var renderingContext = canvas.getContext("2d");
var xStep = 2.5, yStep = -10.0;

// Variables to represent the absolute position, rotation, and
// scaling of the ball.
var x = 5, y = 300, angle = 0;
var compression = 0.5;

var nextFrame = function () {
// Always return to the same state after each iteration.
renderingContext.save();

// Clear the canvas.
renderingContext.clearRect(0, 0, canvas.width, canvas.height);

// Move the ball to the current position.
renderingContext.translate(x, y);

// Scale and rotate the ball.
renderingContext.scale(1, compression);
renderingContext.rotate(angle);

// *Now* draw.
drawBasketball(renderingContext);

// Calculate the new position, rotation, and scale.
x += xStep; y += yStep; yStep += 0.25;
angle += Math.PI / 180; // 1 degree.
compression += (compression <= 0.95) ? 0.05 : 0;

// Quick check to see if the ball has hit the "floor."
// This results in a "bounce."
if (y + yStep > 300) {

compression = 0.5;

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 523 — #61
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 523

y = 300; yStep = -10.0;
}

// One more check to see if the ball has gone "off-canvas."
// This moves the ball back to the left side.
if (x > canvas.width) {

x = 50;
}

renderingContext.restore();
};

// One hundred frames per second!
setInterval(nextFrame, 10);

✝ ✆

9.4.10 Canvas by Example

For a full-fledged canvas example, we have implemented yet another variant of
our tic-tac-toe case study; this version can be found at http://javascript.cs.

lmu.edu/tictactoe/canvas. This version is organized similarly to the version in
Section 7.4 in that it is designed to have minimal dependence on the HTML page
that references its script.

The main highlight of this version is its use of a canvas element as the display
mechanism for the tic-tac-toe board, instead of a table. This change has the
following consequences:

With one distinct web element for each tic-tac-toe cell in prior versions, no
additional computation was necessary to find the cell that corresponded to a
click: the browser did this for you! With the single canvas element containing
the entire tic-tac-toe grid, however, the location of the mouse click determines
the affected cell.

As if this weren’t enough of a twist, many browsers today do not actually
have a standard, consistent mechanism for delivering mouse click coordinates.
There are also some gotchas involving whether or not a web page is currently
scrolled, which affects the reported click location.

To address this compatibility issue, we have adapted code from [Pil10] that
takes browser variations and scrolling into account:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 524 — #62
✐

✐

✐

✐

✐

✐

524 CHAPTER 9 Graphics and Animation

✞ �

var getCursorPosition = function (event) {
var x, y;
if (event.pageX || event.pageY) {

x = event.pageX;
y = event.pageY;

} else {
x = event.clientX + document.body.scrollLeft +

document.documentElement.scrollLeft;
y = event.clientY + document.body.scrollTop +

document.documentElement.scrollTop;
}

x -= board.offsetLeft;
y -= board.offsetTop;

return { ’x’: x, ’y’: y };
};

✝ ✆

The click handler for the canvas calls this function to get a reliable (x, y)

location for the mouse click:
✞ �

var set = function (event) {
// Start with our cross-browser coordinate finder.
var location = getCursorPosition(event);

// Continues...
✝ ✆

We will leave the details on getCursorPosition to [Pil10]. It is also possible
that, by the time you read this, web browsers will have converged on a
consistent standard for reporting mouse click coordinates.

The members of the squares array must thus include their coordinates
within the canvas, since they are no longer web page elements, as seen
in the assigned onload function. We choose to store their upper-left corners
and assume they are all the same size:
✞ �

var indicator = 1;
var y = 0;

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 525 — #63
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 525

for (var i = 0; i < 3; i++) {
var x = 0;
for (var j = 0; j < 3; j++) {

squares.push({ x: x, y: y, indicator: indicator });
indicator += indicator;
x += board.width / 3;

}
y += board.height / 3;

}
✝ ✆

Finally, we now need a getSquare function that locates the square that
contains a detected mouse click:
✞ �

var getSquare = function (x, y) {
var cellWidth = board.width / 3;
var cellHeight = board.height / 3;
for (var i = 0; i < squares.length; i++) {

if ((x > squares[i].x) && (x < squares[i].x + cellWidth)
&& (y > squares[i].y) && (y < squares[i].y +
cellHeight)) {
return squares[i];

}
}

return null;
};

✝ ✆

One might view these changes as disadvantages of the canvas approach: the man-
agement of cell locations was given to us “for free” when we worked within the
DOM. Now that we have “taken over” the entire game board with a single canvas,
we have to implement these functions ourselves.

In addition, the nodeValue property, which used to hold the symbol within
a square and thus the string to be displayed, gives way to a paint function
that paints a particular cell state: empty, X, or O. This gives us maximum flex-
ibility in what to display inside a cell. These paint functions are taken from a
squarePainters array that is mapped according to the strings that were origi-
nally used in nodeValue and are still used by turn and score. Each paint function

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 526 — #64
✐

✐

✐

✐

✐

✐

526 CHAPTER 9 Graphics and Animation

takes x and y parameters, representing the upper-left corner of the square to be
drawn. As an example, here is the function that paints the X symbol:
✞ �

function (x, y) {
// X’s are dark blue diagonals with drop shadows.
boardContext.save();
boardContext.lineWidth = 5;
boardContext.strokeStyle = "rgb(0, 0, 120)";
boardContext.shadowOffsetX = 0;
boardContext.shadowOffsetY = 1;
boardContext.shadowBlur = 3;
boardContext.shadowColor = "rgba(0, 0, 0, 0.75)";

// We draw within a region whose margin is the grid thickness.
var cellWidth = board.width / 3 - (gridThickness << 1);
var cellHeight = board.height / 3 - (gridThickness << 1);
var side = Math.min(cellWidth, cellHeight);
var xCorner = side >> 2;
var xSize = side * 3 >> 2;

// The translate call helps to simplify the path coordinates.
boardContext.translate(x, y);
boardContext.beginPath();
boardContext.moveTo(xCorner, xCorner);
boardContext.lineTo(xCorner + xSize, xCorner + xSize);
boardContext.moveTo(xCorner, xCorner + xSize);
boardContext.lineTo(xCorner + xSize, xCorner);
boardContext.stroke();

boardContext.restore();
}

✝ ✆

The result of all of this code can be seen in Figure 9.17, which shows a canvas-
based tic-tac-toe game in progress.

What cannot be seen in the figure is an additional touch: animation. You
will have to visit http://javascript.cs.lmu.edu/tictactoe/canvas to see this
for yourself. Whenever the player makes a move, the new X or O does not just
appear—it does so with some kind of animation.

The overall animation strategy is the same: when the animation needs to
“play,” a particular function, in this case animate, is called. In this example,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 527 — #65
✐

✐

✐

✐

✐

✐

9.4 The Canvas Element 527

FIGURE 9.17

A canvas-based tic-tac-toe case study.

we trigger the animation when the player makes a move, which in turn is when
the click event is handled by the set function:
✞ �

var set = function (event) {
// Start with our cross-browser coordinate finder.
var location = getCursorPosition(event);
var square = getSquare(location.x, location.y);
if (square) {

if (square.paint !== squarePainters[’\xA0’]) {
return;

}

// Animate the incoming mark.
animate(square);

}
};

✝ ✆

Note how a lot of the old set code is gone. We will get to that in a moment.
The animate function should be somewhat recognizable: most of it consists of a

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 528 — #66
✐

✐

✐

✐

✐

✐

528 CHAPTER 9 Graphics and Animation

setInterval call to a “next frame” function. The animation lasts for a particular
number of frames (i.e., interval function calls), then ends when that number of
frames is reached:
✞ �

var nextFrame = setInterval(function () {
// The "empty square" painter serves as our eraser.
squarePainters[’\xA0’](square.x, square.y);

// The current mark is drawn using some intermediate rendering
// context state.
boardContext.save();
tweeners[turn](frameCount / frameTotal, square.x, square.y);
squarePainters[turn](square.x, square.y);
boardContext.restore();

// Are we done?
frameCount += 1;
if (frameCount > frameTotal) {

clearInterval(nextFrame);
finishTurn(square);

}
}, 1000 / 30);

✝ ✆

What may appear unusual is the reference to the tweeners variable. Recall,
from Section 9.3.4, that a common animation approach involves the definition of a
“tweening” function whose role is to determine, based on an absolute time slice and
other parameters, the state of the animation at a particular frame. In this case, the
time slice is represented by the percent completion of the animation (frameCount
/ frameTotal). The tweeners variable is an object with functions for the X and
O marks:
✞ �

var tweeners = {
’X’: function (animationFraction, x, y) {

/* Tweening code for X goes here. */
},

’O’: function (animationFraction, x, y) {
/* Tweening code for O goes here. */

},
};

✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 529 — #67
✐

✐

✐

✐

✐

✐

9.5 SVG 529

The appropriate tweeners function for the current turn is called in order to
set up the rendering context, after which the aforementioned squarePainters

function is called. Since much of the animation setup consists of changes to the
rendering context, this code is bracketed by a save/restore pair.

Finally, the concluding portion of the former set function, which updates the
score, checks for a winning condition, and/or moves on to the next turn, has been
separated into a finishTurn function. This function is called when the designated
number of animation frames has passed.

These paint and animate functions, alongside the additional code for dealing
with coordinates, represent the primary tradeoff with using canvas for an appli-
cation such as this: is the visual flexibility that is afforded by canvas worth the
additional code that HTML, CSS, the DOM, and its events otherwise provide au-
tomatically or more easily? In the end, the answer to this question can only be
determined on a case-to-case basis. For this particular case study, you be the judge:
do you prefer this version of tic-tac-toe over the ones you have seen earlier in the
text? The strength of this preference, in relation to the increased code complexity,
then determines whether all that additional work was worth it!

Review and Practice

1. What is the difference between the width and height attributes of the
canvas tag/element, and its width and height properties in CSS?

2. What happens to the displayed content within a canvas element when the
web browser’s magnification or zoom level is increased?

3. In the canvas-based tic-tac-toe case study, parts of the set function were
separated into a finishTurn function, which is called after the animation
has concluded. Why is this necessary? That is, why couldn’t the code in
finishTurn simply follow the animate call in set?

9.5 SVG

SVG, short for Scalable Vector Graphics, is yet another graphics technology stan-
dard for web pages [W3C09]. SVG bridges a gap between HTML/CSS and the
canvas element: like HTML/CSS, it is object-based and therefore does not get
“blocky” or “jaggy” when magnified, but like canvas, SVG can handle a wider
variety of shapes and visual elements than HTML/CSS.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 530 — #68
✐

✐

✐

✐

✐

✐

530 CHAPTER 9 Graphics and Animation

Like HTML, SVG is expressed as a sequence of tags with corresponding at-
tributes. An SVG drawing thus resembles an HTML document at the source code
level, though the specific tags and attributes differ. Like HTML and canvas, an
SVG drawing can also be “built” using pure JavaScript code. Finally, SVG anima-
tion resembles HTML animation more than canvas animation: since it is object-
based, animation in SVG consists of making small, frequent changes to individual
SVG elements, as opposed to the draw/redraw approach required by the pixel-
based canvas. Plus, SVG can perform declarative animation—certain elements
can state the type of animation that is to take place, and the animation “just
happens,” with no additional programming.

9.5.1 Seeing SVG in a Web Browser

The following listing shows the code/tags that produce the SVG drawing shown
in Figure 9.18:
✞ �

<svg version="1.1" xmlns="http://www.w3.org/2000/svg">

<circle cx="100" cy="50" r="40"
stroke="black" stroke-width="2" fill="blue"/>

<rect x="20" y="75" width="250" height="100"
rx="40" ry="20" fill="red" opacity="0.25"/>

<line x1="100" y1="50" x2="270" y2="175"
stroke="rgb(255, 255, 80)" stroke-width="10px"
stroke-linecap="round"/>

</svg>
✝ ✆

This drawing can be made to appear in an SVG-capable web browser using
any of the following mechanisms:

The SVG code can be saved as a separate file (with a file name suffix of
.svg) then opened directly by the browser. When the .svg file is opened
directly, no other content is shown because, well, there isn’t anything else!
This approach suffices for experimentation or testing, or when all of the
desired content can be captured in the SVG drawing.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 531 — #69
✐

✐

✐

✐

✐

✐

9.5 SVG 531

FIGURE 9.18

A simple (abstract) SVG drawing.

The SVG file can also be referenced within an HTML file using an iframe

element. For example, to include an SVG file named diagram.svg within a
web page, you may use the following tag:
✞ �

<iframe src="diagram.svg" width="500" height="500"></iframe>
✝ ✆

The width and height attributes are optional, but you will probably use
them most of the time in order to control the space occupied by the SVG
drawing.

The SVG code can be included directly (i.e., inlined) among the HTML
tags; inline SVG is, in fact, part of the latest HTML standard specification
[W3C08]. Note that SVG elements are not considered to be a part of HTML,
per se. Instead, they are viewed as embedded content, with their own distinct
namespace:
✞ �

<!-- HTML DOCTYPE, html, and head above this line. -->
<body>

<!-- Some HTML can go here. -->
<svg xmlns="http://www.w3.org/2000/svg" version="1.1"
viewBox="0 0 100 100" width="400" height="400">
<linearGradient id="backgroundGradient"

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 532 — #70
✐

✐

✐

✐

✐

✐

532 CHAPTER 9 Graphics and Animation

x1="0%" y1="5" x2="0%" y2="20" gradientUnits=
"userSpaceOnUse">
<stop offset="0%" stop-color="rgb(255, 200, 200)" />
<stop offset="40%" stop-color="red" />
<stop offset="100%" stop-color="rgb(60, 0, 0)" />

</linearGradient>
<rect x="5" y="5" width="20" height="20"
fill="url(#backgroundGradient)" />

</svg>
<!-- More HTML can go here. -->

</body>
<!-- Other closing tags below this line. -->

✝ ✆

In case you are wondering, the SVG part of that code fragment looks like
Figure 9.19.

You can also build an SVG drawing “out of thin air” using JavaScript. This
approach is structurally similar to what you have seen before, except with a
variant of createElement called createElementNS. “NS” stands for “names-
pace” here. As mentioned before, SVG is not strictly a part of HTML and
so its elements must explicitly conform to the SVG language:
✞ �

var svgns = "http://www.w3.org/2000/svg";

var svg = document.createElementNS(svgns, "svg");
svg.setAttribute("width", 256);
svg.setAttribute("height", 256);
svg.setAttribute("viewBox", "0 0 50 50");

var shape = document.createElementNS(svgns, "circle");

FIGURE 9.19

An SVG rectangle with a gradient.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 533 — #71
✐

✐

✐

✐

✐

✐

9.5 SVG 533

shape.setAttribute("cx", 25);
shape.setAttribute("cy", 25);
shape.setAttribute("r", 10);
shape.setAttribute("fill", "green");
svg.appendChild(shape);

document.body.appendChild(svg);
✝ ✆

There is no accompanying figure for the preceding code because you can
run it, as is, in http://javascript.cs.lmu.edu/runner and see the result
for yourself. Note also the fairly straightforward correspondence between
SVG tags and createElementNS, and SVG attributes and setAttribute.
This means that, given any SVG drawing, conversion from SVG tags to
dynamically created JavaScript and back should not be too complicated.

As you might have inferred, the specific mechanism of choice ultimately depends
on how your web page is structured and how its assets are created or managed.
Thus, the remainder of this section will focus on the SVG tags and attributes
themselves, without cluttering in any information that pertains only to how the
SVG drawing is linked to or written inline. Of course, when behavior needs to be
dynamic, the programmatic approach will be the way to go.

9.5.2 SVG Case Study: A Bézier Curve Editor

A walkthrough of SVG’s elements, attributes, and capabilities, as we have done
with HTML/CSS and the canvas element, can get quite tedious because they are
conceptually similar to and share some overlap with these technologies, differing
only in terms of syntax and specific details. Instead, we take a different approach:
we present a self-contained, fairly extensive case study that shows many of SVG’s
features and highlight points of interest within that case study. The official SVG
specification [W3C09], among other resources and tutorials that are easy to find
on the web, should fill in the gaps and provide specifics.

Our case study is a rudimentary Bézier curve editor, and it has been imple-
mented as a single .svg file. You can access this document at http://javascript.
cs.lmu.edu/curve-editor.svg (note the suffix). Successfully loading it should
produce something that looks like Figure 9.20.

The editor is meant to work similarly to those found in drawing programs such
as Adobe Illustrator: dragging the bluish squares modifies the endpoints or vertices

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 534 — #72
✐

✐

✐

✐

✐

✐

534 CHAPTER 9 Graphics and Animation

FIGURE 9.20

An SVG Bézier curve editor.

of the curve, while dragging the greenish circles modifies the control points of the
curve. The curve itself is animated so that it appears to “glow” red; we put that
there to demonstrate SVG’s declarative animation feature. Dotted gray lines relate
the control points to their associated vertices.

Viewing the source code to http://javascript.cs.lmu.edu/curve-editor.

svg reveals tags and attributes that should look familiar yet different. This is how
it starts:
✞ �

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" onload="editorSetup();">
<!-- Generalized functionality for editing curves. -->
<script xlink:href="../js/curve-editor.js" />

✝ ✆

The overall tag (and thus element) is svg. Like html, this serves as the top-level
container for the drawing’s content. Note the onload attribute, which specifies code
that will run when document loading is complete (see what we mean by “familiar
yet different?”). We will look at the editorSetup function later.

The first element within the SVG document is script. In another case of déjà
vu, this element works very similarly to its namesake in HTML. Note here that a
script element that refers to a separate file uses an xlink:href attribute instead
of src. We will look at inside curve-editor.js later on, but suffice it to say that
this tag results in similar behavior to its HTML equivalent: it reads the script and
executes its code. Top-level variables remain available for later.

The tags that follow show how gradients are expressed as first-class elements.
Identifiers (the id attribute) facilitate references to them later in the drawing.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 535 — #73
✐

✐

✐

✐

✐

✐

9.5 SVG 535

Note any similarities to the CSS gradients from Section 9.2.3—this is by design:
✞ �

<linearGradient id="vertexGradient" gradientUnits="objectBoundingBox"
x1="0" y1="0" x2="1" y2="1">
<stop offset="0%" stop-color="rgb(0, 0, 200)" />
<stop offset="10%" stop-color="blue" />
<stop offset="100%" stop-color="black" />

</linearGradient>

<radialGradient id="controlGradient" gradientUnits="objectBoundingBox"
cx="0.5" cy="0.5" r="0.5" fx="0.3" fy="0.3">
<stop offset="0%" stop-color="white" />
<stop offset="50%" stop-color="green" />
<stop offset="100%" stop-color="black" />

</radialGradient>
✝ ✆

9.5.3 Objects in the Drawing

Most of the remaining tags in the case study pertain to the objects within the
drawing. Comments have been elided for brevity here, since the focus is on the
elements themselves and not necessarily their specific roles in the program:
✞ �

<line id="startConnector" stroke="gray" stroke-dasharray="5,3" />
<line id="endConnector" stroke="gray" stroke-dasharray="5,3" />

<path id="path" fill="none" stroke="black" stroke-width="2">
<animateColor attributeName="stroke" dur="5s" repeatCount="

indefinite"
values="black;rgb(220, 0, 0);black" />

<animate attributeName="stroke-width" dur="5s" repeatCount=
"indefinite"

values="2;4;2" />
</path>

<rect id="startVertex" x="40" y="27" width="10" height="10"
fill="url(#vertexGradient)" />

<rect id="endVertex" x="195" y="195" width="10" height="10"
fill="url(#vertexGradient)" />

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 536 — #74
✐

✐

✐

✐

✐

✐

536 CHAPTER 9 Graphics and Animation

<circle id="startControl" cx="25" cy="122" r="5"
fill="url(#controlGradient)" />

<circle id="endControl" cx="150" cy="200" r="5"
fill="url(#controlGradient)" />

✝ ✆

The elements in the preceding listing represent objects to be rendered within
the SVG drawing. These elements are drawn using a “painter’s model”; that is,
they are drawn one at a time and in the order that they appear. Later elements
may partially or totally obscure earlier ones. Thus, the line elements will end up
at the “bottom” of the drawing, with the circle elements up top.

Four types of elements are shown here: line, path, rect, and circle. Per the
SVG specification, each element comes with attributes that are specific to it (e.g.,
x, y, width, and height for rect, or cx, cy, and r for circle). Some attributes
are available across the board, as well, such as id and presentation values such as
fill and stroke. Note how the fill attributes of the rect and circle elements
refer, by id, to the gradients that we saw earlier.

The path element also contains animateColor and animate elements. These
illustrate the declarative animation feature of SVG. Instead of requiring explicit
code for periodically changing the attributes of an element, SVG accepts descrip-
tions of how these attributes change over time. The browser then does the rest. The
tags in this example make the path element (a similar construct, conceptually, to
the paths from Section 9.4.4) cycle its stroke color from black to reddish and back
(animateColor), and also oscillate its stroke width between 2 and 4 (animate).

9.5.4 Reading and Writing Attributes

This being a programming book after all, our case study does not just produce a
static diagram, but also allows you to change it. As mentioned, the Bézier curve
shown can be modified by dragging the square or circle “handles,” with the squares
controlling vertices and the circles linked to control points. This functionality is
delivered through the code contained in curve-editor.js and within the script

element at the end of the .svg file.
The code in curve-editor.js is separated because it is designed for use with any

Bézier curve path element within a document. The functions within this file are
parameterized so that they are not connected to any particular path, rect, circle,
or line elements. The only assumptions made by this code are that rect elements
are used as vertex “handles,” circle elements are used for control point “handles,”

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 537 — #75
✐

✐

✐

✐

✐

✐

9.5 SVG 537

and line elements exist for visually connecting each vertex to its corresponding
control point.

The “meat” of this code is the updateCurve function, which changes a given
path element according to the positions of two rect and circle element pairs.
The function also expects two line elements, updating their endpoints so they
connect the corresponding rect and circle elements:

✞ �

var updateCurve = function (startVertexElement, endVertexElement,
startControlElement, endControlElement,
startConnectorElement, endConnectorElement, path) {
// Grab the data needed for the path.
var startVertex = getCenter(startVertexElement);
var endVertex = getCenter(endVertexElement);
var startControl = getControlCenter(startControlElement);
var endControl = getControlCenter(endControlElement);

// Build the path data string.
var pathData = "M" + startVertex.x + "," + startVertex.y + " ";
pathData += "C" + startControl.x + "," + startControl.y + " ";
pathData += endControl.x + "," + endControl.y + " ";
pathData += endVertex.x + "," + endVertex.y;

// Assign the new data string to the path.
path.setAttribute("d", pathData);

// Update the indicator lines.
updateConnector(startConnectorElement, startVertex, startControl);
updateConnector(endConnectorElement, endVertex, endControl);

};
✝ ✆

The function starts by retrieving the data needed to update the curve: two
vertices and two control points. The vertex coordinates are derived from the centers
of the vertex elements, while the control point coordinates come from the centers
of the control point elements. The vertex elements are rects, and according to
the SVG specification, rectangles are described through their upper-left corner
(x, y), their width, and their height. Thus, deriving their centers requires a little
arithmetic:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 538 — #76
✐

✐

✐

✐

✐

✐

538 CHAPTER 9 Graphics and Animation

✞ �

var getCenter = function (vertex) {
return {

x: +vertex.getAttribute("x") + (vertex.getAttribute("width")
/ 2),

y: +vertex.getAttribute("y") + (vertex.getAttribute("height")
/ 2)

};
};

✝ ✆

Note how the centers are returned as objects with coordinates stored in x and
y properties. A similar approach was taken in the getCursorPosition function of
the canvas implementation of tic-tac-toe (Section 9.4.10).

The circle element, on the other hand, is defined by its center (cx, cy) and
radius r. Thus, deriving its center in order to get control point coordinates is
simpler. A similar (x, y) object is returned:

✞ �

var getControlCenter = function (control) {
return {

x: control.getAttribute("cx"),
y: control.getAttribute("cy")

};
};

✝ ✆

With the desired coordinates read into the startVertex, endVertex,
startControl, and endControl variables, these values can now be written out
to the affected elements—specifically, the path that displays the actual curve and
the connector lines between the vertices and control points.

You have seen paths before: conceptually, these are the same paths seen in Sec-
tion 9.4.4 and beyond. With the canvas element, a path is initiated by calling the
beginPath function. Functions such as moveTo, lineTo, arc, quadraticCurveTo,
and bezierCurveTo then build up the points within the path, concluding with a
fill or stroke call.

The SVG equivalent of a path is structurally the same: a path element de-
clares the existence of the path, and that element includes a sequence of “buildup”
commands that ultimately define it. The path then gets drawn using whatever
presentation or style attributes (or defaults) are assigned to it.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 539 — #77
✐

✐

✐

✐

✐

✐

9.5 SVG 539

Letter Command

M move to
L line to
H horizontal line to
V vertical line to
C curve to
S smooth curve to
Q quadratic Bézier curve to
T smooth quadratic Bézier curve to
A elliptical arc
Z close path

Table 9.1

Available path Element Commands

Unlike the sequence of function calls in a canvas path, however, the key in-
formation for the SVG path element is expressed as a single, potentially large
string assigned to a particular attribute, simply named d (loosely “data”). The
d attribute consists of path commands. The specific command is designated by a
single letter followed by whatever parameters are required by that path command.
Table 9.1 lists what’s available.

Many path command parameters consist of 2D coordinates, and these coordi-
nates can either be absolute (i.e., an exact location within the SVG drawing) or
relative (i.e., a displacement or offset from the previously mentioned point). Up-
percase command letters indicate absolute coordinates and lowercase command
letters indicate relative ones.

In the case of our Bézier curve editor, we need only the M move to command
followed by a single C curve to command. In all cases, coordinates are absolute,
so both letters are capitalized. The M command takes the coordinates of the first
vertex, and the C command lists the two control points followed by the second
vertex. The string is built through simple concatenation:
✞ �

// Build the path data string.
var pathData = "M" + startVertex.x + "," + startVertex.y + " ";
pathData += "C" + startControl.x + "," + startControl.y + " ";

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 540 — #78
✐

✐

✐

✐

✐

✐

540 CHAPTER 9 Graphics and Animation

pathData += endControl.x + "," + endControl.y + " ";
pathData += endVertex.x + "," + endVertex.y;

// Assign the new data string to the path.
path.setAttribute("d", pathData);

✝ ✆

The setAttribute call assigns the final string to the path element’s d at-
tribute, which automatically updates the display.

The remainder of updateCurve positions the two line elements that con-
nect the start and end vertices to their corresponding control points. The
updateConnector function assigns the (x, y) coordinates to the appropriate end-
points of each line element, simply named (x1, y1) and (x2, y2):

✞ �

var updateConnector = function (connectorElement, vertex, controlPoint)
{
connectorElement.setAttribute("x1", vertex.x);
connectorElement.setAttribute("y1", vertex.y);
connectorElement.setAttribute("x2", controlPoint.x);
connectorElement.setAttribute("y2", controlPoint.y);

};
✝ ✆

In general, reading and writing SVG elements is a matter of calling
getAttribute and setAttribute, respectively. While this mechanism looks some-
what different from the direct reading and assigning of properties in HTML, the
behavior is otherwise the same: the web browser keeps all of these attributes up-
dated, such that reading them always provides the current value, and setting them
triggers the corresponding changes to the displayed drawing.

A missing detail: How does one get a “hold” of the elements to be read or
written? The answer is quite similar to how it can be done with HTML and is part
of the discussion in the next section.

9.5.5 Interactivity (a.k.a. Event Handling Redux)

The final aspect of our case study involves the code required to connect the user’s
actions to changes in the SVG elements, thus resulting in updates to the displayed
Bézier curve. As with prior HTML examples, we set things up through a load

event handler:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 541 — #79
✐

✐

✐

✐

✐

✐

9.5 SVG 541

✞ �

var editorSetup = function () {
/* Function and variable definitions. */
...

return function () {
document.getElementById("startVertex").onmousedown =

getStartDragHandler(updateVertex);
document.getElementById("endVertex").onmousedown =

getStartDragHandler(updateVertex);
document.getElementById("startVertex").onmouseup =

endDragHandler;
document.getElementById("endVertex").onmouseup = endDragHandler

;
document.getElementById("startControl").onmousedown =

getStartDragHandler(updateControl);
document.getElementById("endControl").onmousedown =

getStartDragHandler(updateControl);
document.getElementById("startControl").onmouseup =

endDragHandler;
document.getElementById("endControl").onmouseup =

endDragHandler;
updateSampleCurve();

};
}();

✝ ✆

Skipping to the end at first, we see that the load event handler finishes up with
a call to updateSampleCurve. This function is a simple “sync,” ensuring that the
current curve does correspond to the current locations of the vertex and control
point “handles.” It is a call to updateCurve, with the specific elements that are
declared in this SVG drawing:
✞ �

var updateSampleCurve = function () {
updateCurve(document.getElementById("startVertex"),

document.getElementById("endVertex"),
document.getElementById("startControl"),
document.getElementById("endControl"),
document.getElementById("startConnector"),
document.getElementById("endConnector"),
document.getElementById("path"));

};
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 542 — #80
✐

✐

✐

✐

✐

✐

542 CHAPTER 9 Graphics and Animation

The rest of the load event handler is a sequence of event handler assignments,
specifically for the mousedown and mouseup events of certain elements. We see
here that accessing elements within the SVG drawing is equivalent to accessing the
elements of a web page: the variable document is available for the SVG drawing as a
whole, and that drawing has a getElementById function that returns the element
with the given ID. SVG does in fact conform to the Document Object Model,
so manipulating an SVG drawing programmatically is very similar to doing so in
HTML.

The event handlers are coordinated around supporting mouse drags: holding
down a mouse button over either a vertex or control point “handle,” moving the
mouse, then letting go of the button when the new position has been finalized
by the user. Thus, it makes sense that the expressions that assign handlers to
mousedown events have the words “start drag” in them, while the mouseup handlers
refer to a single endDragHandler function.

The general sequence of a drag operation in this Bézier curve editor is as
follows:

1. When the mouse button is held down, we save the element over which this
took place—this is the element that will be dragged.

2. While the element is being moved (we will see how this is tracked in a mo-
ment), take note of the new position and update the curve accordingly.

3. When the mouse button is lifted, the drag operation ends by “letting go” of
the dragged element and stopping the mouse movement–update cycle.

We thus require a variable over the course of the mouse drag to store the current
“drag element.”
✞ �

var dragElement = null;
✝ ✆

Let’s look at how drags are started. In this curve editor, two types of elements
can be dragged: rect elements for the curve vertices and circle elements for its
control points. The only difference between these two drag operations is the set of
attributes needed to update the state of the curve. For rect elements, we need to
access its upper-left corner (x, y) and size (width and height), while for circle

elements, we only need the center (cx, cy). We thus place these activities under
separate updateVertex and updateControl functions, respectively. Each function

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 543 — #81
✐

✐

✐

✐

✐

✐

9.5 SVG 543

takes an event parameter. This is the mouse motion event that we capture while
the drag is taking place. Both functions read the position of the mouse and set the
new location of the dragged element accordingly:

✞ �

var updateVertex = function (event) {
dragElement.setAttribute("x", event.clientX - dragElement.

getAttribute("width") / 2);
dragElement.setAttribute("y", event.clientY - dragElement.

getAttribute("height") / 2);
};

var updateControl = function (event) {
dragElement.setAttribute("cx", event.clientX);
dragElement.setAttribute("cy", event.clientY);

};
✝ ✆

The getStartDragHandler function sets up these functions when the mouse
button is pressed:

✞ �

var getStartDragHandler = function (moveFunction) {
return function (event) {

dragElement = event.target;
document.onmousemove = function (event) {

moveFunction(event);
updateSampleCurve();

};
};

};
✝ ✆

In essence, when the mouse button is pressed, the pressed element,
event.target, is assigned to the dragElement variable. The mousemove event is
then tracked using either updateVertex or updateControl (or whatever is passed
in the moveFunction parameter). Then, after the mouse moves and the dragged
element is updated, the curve is redisplayed via updateSampleCurve.

Letting go of the mouse button requires the same actions, regardless of the ele-
ment being dragged. Thus, endDragHandler is not a function that in turn returns
the handler function, but is the event handler itself:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 544 — #82
✐

✐

✐

✐

✐

✐

544 CHAPTER 9 Graphics and Animation

✞ �

var endDragHandler = function (event) {
document.onmousemove = null;
dragElement = null;

};
✝ ✆

In other words, we stop tracking mouse movement over the SVG drawing and
clear out our reference to the outgoing dragElement.

9.5.6 Other SVG Features

As mentioned earlier in this section, we have opted to highlight specific aspects of
SVG through a case study rather than walk through a laundry list of features and
capabilities. Thus, while the case study can provide a feel for SVG, it certainly
cannot cover everything that it can do. Some features that may interest you for
further reading:

SVG supports element grouping, similar to the Group function found in
many drawing programs. Grouping allows multiple elements to be treated,
and thus manipulated, as one.

Like canvas, SVG also supports transforms. Transformations can be assigned
as a per-element attribute, and they can also be animated declaratively.

SVG supports image processing filters, allowing the objects within the draw-
ing to be manipulated at the pixel level. Filter elements for blurs, color ma-
nipulation, and general convolution are available, and many of these effects
can be animated declaratively.

CSS can be used with SVG just as it is used with HTML: it can establish
common sets of attribute values, or styles, for certain types or groups of
elements. Like groups, CSS makes it easier to control the appearance of
multiple elements without explicitly setting attributes for them individually.

As mentioned, the official SVG specification provides full details and many exam-
ples [W3C09]. Other SVG tutorials, articles, and resources are also fairly easy to
find on the web.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 545 — #83
✐

✐

✐

✐

✐

✐

9.6 3D Graphics with WebGL 545

Review and Practice

1. Look up the width, height, and viewBox attributes of the top-level svg
element. How are they related?

2. Is it possible to put a div element in an SVG drawing, or to put a circle

element in an HTML document? Why or why not?

3. Read up on the SVG g element. In what ways is it similar to a canvas

element’s 2D rendering context? In what ways is it different?

9.6 3D Graphics with WebGL

In theory, 3D graphics algorithms sit squarely on top of 2D graphics technologies:
they take 3D information and compute how this can be presented on a 2D display in
a manner that our eyes and brains interpret as a 3D view. But while it is completely
possible to implement these 3D algorithms in software alone, using a 2D pixel-level
graphics technology such as the canvas element, the sheer computational scale
and complexity of these algorithms make this approach impractical for general
use. Still, it is worth mentioning that software-only 3D libraries in JavaScript have
been implemented, if only as proofs of concept. One such project, OpenJSGL,
implements some of the 3D fixed-function OpenGL pipeline in pure JavaScript,
painting on a standard 2D canvas element [Bur08]. The functionality is accurate,
but, because all calculations are done in JavaScript, performance is an issue for
anything beyond the most rudimentary 3D programs.

The key to 3D graphics with JavaScript, then, is to connect JavaScript func-
tions as directly as possible to the underlying graphics hardware. The technol-
ogy that does this is WebGL. As its name implies, it connects web browsers to
the OpenGL 3D graphics standard [Khr09]. This standard has widespread, well-
established hardware support and is available on almost all modern platforms and
devices, ranging from mobile and embedded devices all the way up to the most
specialized graphics workstations and gaming consoles [Khr10].

This section presents and walks through a WebGL case study that you can run
on any WebGL-capable browser. However, since 3D programming concepts and
techniques are themselves way beyond the scope of this text, we focus primarily
on how the program connects to HTML and JavaScript instead of the specific 3D

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 546 — #84
✐

✐

✐

✐

✐

✐

546 CHAPTER 9 Graphics and Animation

code. Consider it a teaser; if you find yourself hooked, your next step would be
to study computer graphics in general. The concepts are the same, regardless of
the programming language. WebGL makes these technologies available to a web
browser (and thus JavaScript) without the need for additional software or plug-ins.

9.6.1 WebGL Is the 3D canvas

As hinted in Section 9.4.2, WebGL is implemented as the 3D graphics rendering
context for the canvas element. Thus, the first step in using WebGL is to create
a canvas element within a web page. This step is identical to its 2D counterpart.

Once the canvas element is ready or retrieved (say, by getElementById),
calling getContext with "webgl" as the parameter instead of "2d" returns the
3D WebGL rendering context:
✞ �

var gl = canvas.getContext("webgl");
✝ ✆

This rendering context is completely different from the 2D version, with to-
tally different concepts and functions. In fact, programmers familiar with OpenGL
will recognize the 3D rendering context better than programmers familiar with
2D canvas programming. Note the chosen name for the variable that holds the
rendering context: gl is a nod to the OpenGL roots of WebGL.

What does remain similar to canvas in WebGL is event handling: mouse and
other events are reported to the canvas element in exactly the same way as in
2D. Thus, assigning functions to mousemove, mousedown, and friends remains the
same.

With this context in mind, let’s look at a case study.

9.6.2 Case Study: The Sierpinski Gasket

We have chosen to render the 3D version of a fractal called the Sierpinski gasket
for our WebGL case study. The rendering can be rotated in 3D and features a sim-
ple lighting model. The case study can be accessed at http://javascript.cs.

lmu.edu/webgl-sierpinski; WebGL-enabled browsers should display something
similar to Figure 9.21. If you are using an older web browser that does not sup-
port WebGL, you will immediately see a somewhat unceremonious alert dialog
informing you of that fact.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 547 — #85
✐

✐

✐

✐

✐

✐

9.6 3D Graphics with WebGL 547

FIGURE 9.21

The 3D Sierpinski gasket, implemented using WebGL and rendered over the Wikipedia article about
the Sierpinski triangle.

The HTML for this page is fairly straightforward, and we include it here in its
entirety:
✞ �

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8"/>
<title>WebGL Case Study: The Sierpinski Tetrahedron</title>
<script src="../js/matrix4x4.js"></script>
<script src="../js/sierpinski.js"></script>
<script>
window.onload = function () {
// All of the action is in the startSierpinski function.
startSierpinski(document.getElementById("sierpinski"));

};

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 548 — #86
✐

✐

✐

✐

✐

✐

548 CHAPTER 9 Graphics and Animation

</script>
</head>
<body>
<h1>The Sierpinski Tetrahedron</h1>

<p>Drag the mouse to rotate the tetrahedron.</p>

<!-- Some HTML/CSS trickery to put the tetrahedron on top of the
Wikipedia page about it. -->

<div style="position: relative; width: 100%">
<iframe src="http://en.wikipedia.org/wiki/Sierpinski_triangle"
style="position: absolute; width: 100%; height: 600px;">

</iframe>
<div style="position: absolute; width: 100%; top: 5em;

text-align:center;">
<canvas id="sierpinski" width="512" height="512">
</canvas>

</div>
</div>

</body>
</html>

✝ ✆

Note how, at this level, the page and code are identical to their 2D counterparts.
A canvas tag with an id of sierpinski defines the element, and this element is
retrieved from the DOM through getElementById. All other activities take place
in the startSierpinski function.

The startSierpinski function can be found in sierpinski.js. The other file
referenced by the web page, matrix4x4.js, is a Mozilla-authored script that de-
fines a number of useful 3D graphics utility functions. Since our focus here is on
JavaScript programming and not computer graphics theory, we will look primarily
at sierpinski.js.

The startSierpinski function has been written to accommodate a start-to-
end read-through as much as possible. It should be noted that “real-world” 3D
graphics code may not be as monolithic as startSierpinski, making use of a
wide variety of reusable utility scripts and supporting files.

The function begins with—surprise—a getContext call. A null 3D rendering
context triggers the error dialog regarding the web browser’s (lack of) WebGL
support:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 549 — #87
✐

✐

✐

✐

✐

✐

9.6 3D Graphics with WebGL 549

✞ �

var startSierpinski = function (canvas) {

// Grab the WebGL rendering context.
var gl = canvas.getContext("webgl");
if (!gl) {

alert("No WebGL context found...sorry.");

// No WebGL, no use going on...
return;

}
...

✝ ✆

With the gl context in hand, the function then starts setting up the “scene.”
Here we see the first block of code that will be more recognizable to OpenGL
programmers than to 2D canvas programmers:

✞ �

gl.enable(gl.DEPTH_TEST);
gl.clearColor(0.0, 0.0, 0.0, 0.0);
gl.viewport(0, 0, canvas.width, canvas.height);

✝ ✆

Note the arguments to the clearColor function call: in WebGL, this function
sets the background color that will be used for any part of the 3D scene that is
not occupied by an object. The color is expressed in RGBA format, with each
component ranging from 0.0 to 1.0. As you might recall, the A in this format
represents the alpha channel or transparency level. Setting the alpha channel of
clearColor to 0.0 produces the “object-on-top” effect in the case study. The
canvas element is still rectangular, but is now invisible except where 3D objects
are present.

Since we are not going into 3D in depth here, we will leave further specifics
of these functions to a computer graphics or OpenGL programming text. We just
wanted to throw some of this in so you can get some feel for how the API looks.

9.6.3 Defining the 3D Data

The next section of the program takes care of defining the gasket itself. The entry
point to this functionality is the divideTetrahedron function:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 550 — #88
✐

✐

✐

✐

✐

✐

550 CHAPTER 9 Graphics and Animation

✞ �

var vertices = [];
var normals = [];
divideTetrahedron(vertices, normals,

[0.0, 3.0 * Math.sqrt(6), 0.0],
[-2.0 * Math.sqrt(3), -Math.sqrt(6), -6.0],
[-2.0 * Math.sqrt(3), -Math.sqrt(6), 6.0],
[4.0 * Math.sqrt(3), -Math.sqrt(6), 0.0],
5);

✝ ✆

Conceptually, the 3D Sierpinski gasket starts out as a tetrahedron (the four
arrays that are passed as arguments in the preceding listing). This tetrahedron is
then split into four tetrahedrons, consisting of the original four vertices and the
six midpoints between these vertices. The new tetrahedrons are then split in the
same way, and so on without a limit. We cannot do this ad infinitum, of course,
so our code uses a depth value that states how many times the base tetrahedron
should be split. In the preceding listing, this depth is 5.

Once divideTetrahedron is done, we will have the triangles that make up the
gasket in the vertices variable and the normal vectors of these triangles in the
normals variable. Since we are skipping the graphics theory, we will have to leave
the normal vectors at that.

The 3D data must then be passed to the graphics card. This transfer activity
is supported by a family of related functions that are made available by the 3D
graphics context:

✞ �

var vertexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.

STATIC_DRAW);

var normalBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, normalBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normals), gl.

STATIC_DRAW);
✝ ✆

Without going into computer graphics specifics, this listing allocates space in
the graphics card for the 3D data (createBuffer) then sends the JavaScript-built
arrays to those buffers using bufferData. Float32Array is a support object that

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 551 — #89
✐

✐

✐

✐

✐

✐

9.6 3D Graphics with WebGL 551

comes with WebGL and is used for passing native JavaScript data into the graphics
hardware.

9.6.4 Shader Code

In OpenGL, the actual 3D graphics operations that are to be performed are spec-
ified in shaders—custom code that determines how a 3D object is displayed in
its associated canvas element. Shaders are written in a specialized language called
GLSL, short for GL Shading Language. The next major section of startSierpinski
has to do with setting up these shaders, starting with their source code:
✞ �

var vertexShaderSource =
"#ifdef GL_ES\n" +
"precision highp float;\n" +
"#endif\n" +

"attribute vec3 vertexPosition;" +
"attribute vec3 normalVector;" +

"uniform mat4 modelViewMatrix;" +
"uniform mat4 projectionMatrix;" +
"uniform mat4 normalMatrix;" +
"uniform vec3 lightDirection;" +

"varying float dotProduct;" +

"void main(void) {" +
" gl_Position = projectionMatrix * modelViewMatrix *

vec4(vertexPosition, 1.0);" +
" vec4 transformedNormal = normalMatrix * vec4(

normalVector, 1.0);" +
" dotProduct = max(dot(transformedNormal.xyz,

lightDirection), 0.0);" +
"}";

var fragmentShaderSource =
"#ifdef GL_ES\n" +
"precision highp float;\n" +
"#endif\n" +

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 552 — #90
✐

✐

✐

✐

✐

✐

552 CHAPTER 9 Graphics and Animation

"varying float dotProduct;" +

"void main(void) {" +
" vec4 color = vec4(1.0, 0.0, 0.0, 1.0);" +
" float attenuation = 1.0 - gl_FragCoord.z;" +
" gl_FragColor = vec4(color.xyz * dotProduct * attenuation,

color.a);" +
"}";

✝ ✆

Note how the shaders themselves are just long strings—after all, they are also
just computer programs, albeit somewhat specialized ones. In practice, the shader
code is more strictly separated for easier maintenance.

The shader source strings are then processed by WebGL, and life goes on if no
errors are encountered during that time. In another case of “connecting worlds,”
successful shader setup concludes with the definition of a number of variables that
serve as “bridges” to the variables in the shader code:

✞ �

gl.uniform3f(gl.getUniformLocation(shaderProgram, "lightDirection"),
0, 1, 1);

var vertexPosition = gl.getAttribLocation(shaderProgram,
"vertexPosition");

gl.enableVertexAttribArray(vertexPosition);
var normalVector = gl.getAttribLocation(shaderProgram, "normalVector");
gl.enableVertexAttribArray(normalVector);

var modelViewMatrixLocation = gl.getUniformLocation(shaderProgram,
"modelViewMatrix");

var projectionMatrixLocation = gl.getUniformLocation(shaderProgram,
"projectionMatrix");

var normalMatrixLocation = gl.getUniformLocation(shaderProgram,
"normalMatrix");

✝ ✆

The first line of this listing not only accesses a shader variable (lightDirection)
via getUniformLocation, but also assigns the vector (0, 1, 1) to it using uniform3f.
The remaining lines mostly store the “locations” of these variables in JavaScript.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 553 — #91
✐

✐

✐

✐

✐

✐

9.6 3D Graphics with WebGL 553

9.6.5 Drawing the Scene

With the Sierpinski data calculated and loaded, the gasket can now be displayed
on the canvas element. That’s what the next section of code in sierpinski.js

handles:
✞ �

var modelViewMatrix = new Matrix4x4();
var projectionMatrix = new Matrix4x4();
var viewerLocation = { x: 0.0, y: 0, z: 20.0 };
var rotationAroundX = 0.0, rotationAroundY = -90.0;

var drawScene = function () {
// Clear the display.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

// Set up the viewing volume.
projectionMatrix.loadIdentity();
projectionMatrix.perspective(45, canvas.width / canvas.height

, 11.0, 100.0);

// Set up the model-view matrix.
modelViewMatrix.loadIdentity();
modelViewMatrix.translate(-viewerLocation.x, -viewerLocation.y, -

viewerLocation.z);
modelViewMatrix.rotate(rotationAroundX, 1.0, 0.0, 0.0);
modelViewMatrix.rotate(rotationAroundY, 0.0, 1.0, 0.0);

// Set up the normal matrix.
var normalMatrix = modelViewMatrix.copy();
normalMatrix.invert();
normalMatrix.transpose();
gl.uniformMatrix4fv(normalMatrixLocation, gl.FALSE,
new Float32Array(normalMatrix.elements));

// Display the gasket.
gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
gl.vertexAttribPointer(vertexPosition, 3, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, normalBuffer);
gl.vertexAttribPointer(normalVector, 3, gl.FLOAT, false, 0, 0);
gl.uniformMatrix4fv(modelViewMatrixLocation, gl.FALSE,

new Float32Array(modelViewMatrix.elements));

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 554 — #92
✐

✐

✐

✐

✐

✐

554 CHAPTER 9 Graphics and Animation

gl.uniformMatrix4fv(projectionMatrixLocation, gl.FALSE,
new Float32Array(projectionMatrix.elements));

gl.drawArrays(gl.TRIANGLES, 0, vertices.length / 3);

// All done.
gl.flush();

};
✝ ✆

The main take-home of this section is the drawScene function, which does
the actual displaying of the Sierpinski gasket. The variables outside of drawScene
(modelViewMatrix, projectionMatrix, viewerLocation, rotationAroundX, and
rotationAroundY) represent shared state, which is also accessed by event handler
code.

9.6.6 Interactivity and Events

The last part of our case study’s code deals with events. The program has a single
interaction scenario: the user can drag the mouse within the 3D scene in order
to see the Sierpinski gasket from all angles. All of the event handler code in the
startSierpinski function supports this single scenario:
✞ �

var xDragStart, yDragStart;
var xRotationStart, yRotationStart;
var cameraRotate = function (event) {

rotationAroundX = xRotationStart + yDragStart - event.clientY;
rotationAroundY = yRotationStart + xDragStart - event.clientX;
drawScene();

};

canvas.onmousedown = function (event) {
xDragStart = event.clientX;
yDragStart = event.clientY;
xRotationStart = rotationAroundX;
yRotationStart = rotationAroundY;
canvas.onmousemove = cameraRotate;

};

canvas.onmouseup = function (event) {
canvas.onmousemove = null;

};
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 555 — #93
✐

✐

✐

✐

✐

✐

9.6 3D Graphics with WebGL 555

This segment adds event handlers for mousedown and mouseup events within
the canvas element. The outline of a drag is as follows: when the mouse button
is held down, its position is noted and a mousemove handler is then assigned to
the canvas. The mousemove event handler is the cameraRotate function, and
this function simply updates the current rotation according to the movement of
the mouse. Upon updating the values, cameraRotate calls drawScene in order
to refresh the display. Figure 9.22 illustrates the Sierpinski gasket after a typical
rotation drag.

FIGURE 9.22

The 3D Sierpinski gasket, rotated.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 556 — #94
✐

✐

✐

✐

✐

✐

556 CHAPTER 9 Graphics and Animation

With the event handlers set up and ready to go, the function ends with an
initial rendering of the 3D scene. Note how, up to this point, none of the preceding
code has yet had a visible effect :
✞ �

drawScene();
✝ ✆

With this function call, the Sierpinski gasket appears before the user for the
first time and the startSierpinski function ends. Subsequent activities are now
entered through the event handlers, and these handlers in turn call drawScene
whenever the rotation angle changes.

Review and Practice

1. Download the case study files and experiment with the color that is passed
into the clearColor function. Aside from invisibility, what other back-
ground effects are possible?

2. Compare the SVG case study drag code to the WebGL case study drag
code. In what ways are they similar and/or different?

3. What happens when the drawScene function call at the end of the
startSierpinski function is removed? What happens when an attempt is
made to rotate the scene?

9.7 Other Client-Side Graphics Technologies

This section serves a primarily historical or contextual purpose: it describes a num-
ber of graphics technologies that, while not considered to be official web standards,
have seen widespread use and adoption. In other words, a lot of websites use these
technologies, and it is useful to place them in context.

9.7.1 Flash

Perhaps the most prevalent nonstandard graphics technology in use today is Flash
[Ado10]. Many might even take issue with our use of the label “nonstandard” with
Flash. For many years, Flash could in fact be considered a de facto standard for
web graphics and animation.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 557 — #95
✐

✐

✐

✐

✐

✐

9.7 Other Client-Side Graphics Technologies 557

Architecturally, Flash is a web browser plug-in; it is a separate piece of software
that registers itself with the web browser. HTML tags such as embed or object

would then identify resources that are meant for display by Flash. Once down-
loaded by the browser, the data in these resources get sent to the Flash plug-in.

Categorically, Flash started as an object/vector-based animation package. Us-
ing separate Flash authoring software, content creators would define objects, shapes,
and other components in a 2D, time-based “stage.” Moving or changing these ob-
jects in different frames would define the desired animation, using tweening tech-
niques that are very similar to those discussed in Section 9.3.4. At the conclusion
of the authoring process, the original “Flash movie” or .fla file would be exported
as a compressed, optimized .swf file. These are the files that web browsers would
download and relay to the Flash plug-in.

As time and adoption progressed, Flash expanded to include other function-
alities such as video playback and database access. The visual authoring tools
were augmented with their own programming language, ActionScript, which, like
JavaScript, is based on the ECMAScript standard. In many respects, the Flash
plug-in has become a full-fledged, general-purpose program execution environment,
contained within, yet distinctly separate from, the web browser’s native HTML/
DOM, CSS, and JavaScript technologies.

9.7.2 Java

Not strictly a graphics technology, Java was an early candidate for general-purpose
web browser programming, and its early popularity is in fact the reason that
JavaScript is so named, despite its having very little resemblance or relationship
to Java itself. The complete Java platform consists of its eponymous programming
language, whose code is then compiled into a special byte code format that runs on
a virtual machine—a software layer that abstracted out the actual computer hard-
ware on which Java programs execute into a standardized, unified set of features
and specifications [LY99]. This platform includes but is not restricted to pixel- and
object-based graphics technologies, many of which, at the time, surpassed what
web pages could do. For this reason, early attempts at generalized, web-based
computer graphics applications turned to Java as the implementation base.

Earlier versions of HTML included an applet element, which provided infor-
mation for loading Java code into a web browser. This code is written in the Java
programming language, then compiled into the aforementioned byte code format.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 558 — #96
✐

✐

✐

✐

✐

✐

558 CHAPTER 9 Graphics and Animation

Web browsers would then pass this code into their own built-in Java virtual ma-
chines for execution.

While this mechanism sounds similar to the plug-in approach, it is important to
note that Java was originally viewed as an “in-the-box” web browser functionality,
and not as a separately installed software package, similarly to how the JavaScript
interpreter and host objects are included today. As Java waned in popularity, it
stopped being an expected (non-plug-in) web browser feature and itself “moved
out” as a plug-in, running as a “peer” to Flash and other plug-in technologies.

Java is primarily used today as a general-purpose but non-browser program-
ming platform. It is used particularly frequently with server-side applications, tak-
ing on the computational and data access workload whose output eventually finds
its way into web pages and applications.

9.7.3 VML

VML, which stands for Vector Markup Language, is functionally equivalent to SVG.
It is mentioned here because, as of this writing, Microsoft’s Internet Explorer (IE)
web browser does not support SVG natively, but it does support VML.6

This SVG/VML schism may normally make web authors who wish to cre-
ate cross-browser, object-based graphics throw up their arms in exasperation,
if it weren’t for a library called Raphaël [Bar10]. Raphaël “wraps” object-based
graphics in JavaScript functions that transparently invoke SVG calls in standards-
compliant web browsers and VML calls in IE. Like jQuery, Raphaël stands as an-
other example of effective library design that delivers genuine time (and headache)
savings for web development.

Review and Practice

1. What is the difference between a plug-in and a “built-in” web browser
technology?

2. Would you consider JavaScript’s name to be a misnomer? Why or why not?

6It is possible that, by the time you read this, IE will have native support for SVG. Nevertheless,

this section’s discussion of Raphaël should remain of interest.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 559 — #97
✐

✐

✐

✐

✐

✐

Chapter Summary 559

Chapter Summary

The latest HTML and CSS web standards provide a wealth of visual options
that used to require custom, pre-rendered image files: drop shadows, rounded
borders, gradient fills, and much more.

Time-based events, particularly as triggered by setInterval, plus well-
planned, gradual changes to the data or properties that have visual effects,
form the basis of computer animation, in any technology.

The canvas element is the standard web browser technology for creating
graphics that require pixel-level control, ideal for manipulating or creating
images of arbitrary content within the browser.

SVG facilitates the creation of object-based graphics well suited for diagrams,
schematics, or applications that require maximum smoothness or sharpness
regardless of magnification or zoom level.

WebGL adds 3D graphics to the canvas element, effectively connecting
JavaScript programs to acceleration hardware that is necessary for adequate
3D performance.

The common thread across these latest technologies is that they are “built
in” to modern, standards-compliant browsers and are interoperable through
JavaScript. Earlier technologies required additional software or plug-ins whose
integration and interaction with web pages may have varied widely.

Exercises

1. Find an online color picker tool (http://www.colorpicker.com/, for exam-
ple) and practice your color conversion skills. “Estimate” the RGB represen-
tations for the following colors, then use the color picker to see the actual
RGB:

(a) Brown

(b) Orange

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 560 — #98
✐

✐

✐

✐

✐

✐

560 CHAPTER 9 Graphics and Animation

(c) Purple

(d) Fuschia

(e) Maroon

(f) Dark green

(g) Navy blue

(h) Gold

(i) Lavender

(j) Light gray

Most online color picker tools use the hexadecimal #rrggbb format, so be
ready to express colors using that notation.

2. Use the same color tool from the previous exercise to convert from RGB
to a color: visualize the colors specified by the following hexadecimal RGB
representations, then enter them into the color picker to see how close you
were to the actual color:

(a) #993300

(b) #FF9900

(c) #6600CC

(d) #CC33FF

(e) #990033

(f) #003300

(g) #000099

(h) #FFCC00

(i) #CCCCFF

(j) #F5F5F5

Don’t worry if your “color sense” isn’t too great—that’s why color picker
tools exist, after all!

3. State whether the following types of visuals are best represented as pixels or
as objects/vectors:

(a) Bar graphs

(b) Faces

(c) Floor plans

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 561 — #99
✐

✐

✐

✐

✐

✐

Exercises 561

(d) Street maps

(e) Terrain maps

(f) Clouds

(g) Circuit diagrams

(h) Planetary and satellite orbits

(i) Granite surfaces

(j) Mathematical functions

4. Write the CSS selector that specifies the following web page elements:

(a) The web page element whose id attribute is header

(b) The web page element whose id attribute is sidebar

(c) All h1 elements in a page

(d) All img elements in a page

(e) All elements whose class attribute is selected

(f) All p elements within a div element

(g) All span or label elements

(h) All input elements

(i) div elements and elements whose class attribute is block

(j) Elements whose class attribute is details that are inside the element
whose id attribute is results

5. The screenshot in Figure 9.23 displays three div elements with exactly the
same margin, padding, and border CSS properties. Mark it up to show
which areas comprise the divs’ border, content, margin, and padding.

FIGURE 9.23

Three div elements, for Exercise 5.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 562 — #100
✐

✐

✐

✐

✐

✐

562 CHAPTER 9 Graphics and Animation

6. The screenshot in Figure 9.24 displays nine span elements with different
background, shadow, and border radius CSS properties. For each element:

(a) Replicate the element’s appearance as closely as possible using CSS
style rules in an HTML file that you write yourself.

(b) Write a program in the JavaScript runner page that makes the footer

div element on that page look like the element.

FIGURE 9.24

Nine span elements, for Exercise 6.

7. The screenshot in Figure 9.25 displays 15 span elements, each with some
combination of 7 specific CSS properties and values.

(a) Based on the figure, infer the seven CSS properties that are mixed and
matched by each span element.

(b) Replicate each span element’s appearance as closely as possible using
CSS style rules in an HTML file that you write yourself.

(c) Write programs in the JavaScript runner page that, in turn, make the
footer div element on that page look like each span element in the
figure.

(d) What HTML attribute (with corresponding CSS selector) makes the
mixing and matching of visuals shown in this figure fairly easy to do?

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 563 — #101
✐

✐

✐

✐

✐

✐

Exercises 563

FIGURE 9.25

Fifteen span elements, for Exercise 7.

8. Use some combination of spacing, border, and absolute positioning/sizing
CSS properties to write HTML pages that display reasonable, if simplified,
facsimiles of the following objects:

(a) A telephone keypad

(b) A piano keyboard (12 keys minimum)

(c) A set of dominoes

(d) The six individual faces of a die

(e) A QWERTY keyboard

(f) Your favorite console game controller (Don’t worry about exactly match-
ing button shapes; rectangles and rounded rectangles are OK for those.)

9. The Dutch painter Piet Mondrian is known for his distinct, geometric com-
positions, some of which are shown in Figure 9.26. Use some combination of
background, spacing, border, and absolute positioning/sizing CSS properties
to write HTML pages that resemble Mondrian’s paintings.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 564 — #102
✐

✐

✐

✐

✐

✐

564 CHAPTER 9 Graphics and Animation

FIGURE 9.26

A sample of works by Piet Mondrian.

10. The tic-tac-toe case study shown in Section 6.7 is essentially a simple HTM-
L/CSS graphics display. Use the visual properties described in this section
(and even others that are available but not explicitly mentioned here) to im-
prove the aesthetic appearance of that program (e.g., colors, borders, drop
shadows).

11. Make the following modifications to the bar chart case study in Section 9.2.5:

Add labeled axes with tick marks

Include a numeric display for each column (i.e., display the value of that
column numerically as well as visually)

Separate common visual properties as CSS rules

12. Read up on the DOM and CSS manipulation capabilities of jQuery and re-
implement the bar chart and Towers of Hanoi case studies (Sections 9.2.5 and
9.2.6, respectively) so they use jQuery’s functions instead of the “raw” DOM.
For example, the code fragment on page 485, plus some of its succeeding code
from the case study, would now look like this:
✞ �

var chart = $("<div></div>").css({
position: "relative",
borderBottomStyle: "solid",

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 565 — #103
✐

✐

✐

✐

✐

✐

Exercises 565

borderBottomWidth: "1px"
});

✝ ✆

After porting the two case studies, answer this question: given the choice,
which approach/API do you prefer, and why?

13. Look up the rules of the Towers of Hanoi puzzle (Section 10.2.2 or elsewhere
on the web) and enhance the Towers of Hanoi case study into a functioning
version. You may implement either a drag-and-drop gesture for moving rings
around or have the user click on a ring to move then click on the destination
tower (while enforcing the rules of the puzzle of course!). Finally, implement
a win condition tester that pops up an alert and resets the puzzle once all
the rings have moved to a new tower.

14. Implement a simple “box drawing program” web page using a combination of
HTML, CSS, and JavaScript. When the user opens the page, he or she should
be able to draw, move, and resize boxes within some designated drawing area.

Tip: Set the drawable area’s user-select CSS property to none so that
mouse drags are not interpreted as page selection actions. You may also look
up and use the cursor CSS property to provide some feedback on what
operation will be initiated if the user begins a mouse drag at the current
location.

15. If you have access to a touch event-capable web browser, implement a similar
box drawing web page as in the previous exercise, but have it respond to
touch events rather than mouse events.

To test your work, you may need to have a web server for hosting your touch-
capable box drawing program, since some devices that have touch-capable
web browsers cannot open web pages as local files.

16. If you have access to a multitouch event-capable web browser, enhance the
touch-capable box drawing web page from the previous exercise so that mul-
tiple touches can operate on multiple boxes. That is, enable more than one
box at a time to be drawn, moved, or resized, based on the placement and
location of the user’s fingers.

17. Download the http://javascript.cs.lmu.edu/basicanimation files and
experiment with different values for the millisecondsPerFrame variable.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 566 — #104
✐

✐

✐

✐

✐

✐

566 CHAPTER 9 Graphics and Animation

For what values of millisecondsPerFrame do the animations start looking
“jerky” or “stuttery”? Is there a point of diminishing returns where decreas-
ing millisecondsPerFrame no longer makes a perceivable difference?

18. Download the http://javascript.cs.lmu.edu/basicanimation files and
modify the constant velocity animation example so that the object moves
diagonally instead of just horizontally.

19. Modify the constant velocity animation example so that the animated object
appears to bounce within its containing element, similarly to 2D Pong games
from the 1970s and 1980s.

20. Implement a tweening function that moves an object based on the cube of the
elapsed time instead of the square. How would you characterize the resulting
movement?

21. Many animation effects have such utility that the jQuery library “cans” them
in easy-to-use functions such as slideUp, slideDown, fadeIn, and fadeOut.
Implement your own workalike functions (without using jQuery, of course),
with each of them taking the element to animate as a parameter:
✞ �

var mySlideDown = function (element) {
/* Your implementation here. */

},

mySlideUp = function (element) {
/* Your implementation here. */

},

myFadeIn = function (element) {
/* Your implementation here. */

},

myFadeOut = function (element) {
/* Your implementation here. */

};
✝ ✆

Hint: Yes, you may use the http://javascript.cs.lmu.edu/basicanimation
files as a starting point.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 567 — #105
✐

✐

✐

✐

✐

✐

Exercises 567

22. One of the optional parameters that the jQuery animation functions can
accept is an easing function, precisely like the ones described in Section 9.3.4.
However, the jQuery functions accept function names instead of the functions
themselves, thus limiting the possible choices only to a fixed set like "swing"
or "linear".

Extend the workalikes you wrote in Exercise 21 so they accept actual easing
functions. Use the function definition described in Section 9.3.4:

✞ �

var myWorkalike = function (element, easingFunction) {
// Your implementation here, where easingFunction
// is called as follows:
var position = easingFunction(currentTime, start,

distance, duration);
};

✝ ✆

Demonstrate the flexibility of your animation functions by calling them with
inline easing function objects.

23. Since JavaScript animations happen concurrently by virtue of the setInterval
function, program execution proceeds immediately, even while an animation
is still going on. Sometimes this is not desirable; you may, for example, want
something to happen only after some element has completely faded in or out.

To address this issue, the jQuery animation functions accept callbacks—
functions that are called only strictly after a particular animation has con-
cluded. Extend your workalikes from Exercise 21 by having them accept
optional callback functions as parameters:

✞ �

// If you did the previous exercise, you may retain the
// easingFunction parameter here.
var myWorkalike = function (element, callbackFunction) {

// Your implementation here, where callbackFunction
// is called as follows once the animation concludes:
callbackFunction();

};
✝ ✆

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 568 — #106
✐

✐

✐

✐

✐

✐

568 CHAPTER 9 Graphics and Animation

24. Add the following animation effects to the tic-tac-toe case study shown in
Section 6.7:

“Fade-ins” for X’s and O’s as the player clicks on the grid

“Fade-outs” for X’s and O’s as a new game is set up

Any sort of “ending animation” (color changes, movement, etc.) upon
the conclusion of a game

If you did any of the preceding animation-workalike exercises, you may use
what you wrote there to make this exercise easier.

25. Write short JavaScript canvas programs that draw the following on a canvas

element of your choosing. Exact dimensions, positions, and color values are
up to you, as long as what you draw corresponds reasonably to the plain
English descriptions:

(a) A blue square at the center of the canvas

(b) A black border surrounding the perimeter of the canvas

(c) A 50% translucent red rectangle overlapping a 50% translucent green
rectangle

(d) An orange “X” whose lines span the upper-left to lower-right corners
then the lower-left to upper-right corners of the canvas, respectively

(e) A brown, solid hexagon

26. Write short JavaScript canvas programs that draw the following on a canvas

element of your choosing. Exact dimensions, positions, and color values are
up to you, as long as what you draw corresponds reasonably to the plain
English descriptions:

(a) A grid of lavender squares, one canvas pixel apart, filling the entire
canvas (there is more than one approach to drawing this)

(b) A “graph paper”-style grid consisting of light green lines that fills the
entire canvas (see above)

(c) A honeycomb pattern at least three hexagons across and three hexagons
down

(d) A polka-dot pattern with pink dots on a brown background

(e) A simplistic number “8” consisting of overlapping purple circles

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 569 — #107
✐

✐

✐

✐

✐

✐

Exercises 569

27. Write short JavaScript canvas programs that draw the following objects on
a canvas element of your choosing. Exact dimensions, positions, and color
values are up to you, as long as what you draw corresponds reasonably to
the plain English descriptions:

(a) A “fake 3D” green wireframe cube at the bottom right of the canvas

(b) A “fake 3D” solid cube, with its three visible faces colored in varying
shades of gray, at the top center of the canvas

(c) Reasonable facsimiles of a baseball, a golf ball, and a tennis ball, painted
with gradients for a 3D effect

(d) A yellow smiley face with a radial gradient to give it a faux spherical
effect

(e) A ringed planet, painted with gradients for a 3D effect

28. Write short JavaScript canvas programs that draw the following “scenes” on
a canvas element of your choosing. Exact dimensions, positions, and color
values are up to you, as long as what you draw corresponds reasonably to
the plain English descriptions:

(a) A simple sunset scene, with a reddish sun setting into a green horizon
under a gray-blue sky

(b) A similar sunset scene as part (a), but with the sun setting into a dark
blue “ocean” horizon and with a partial reflection showing on the ocean
surface

(c) A red “sphere” (i.e., a circle with a radial gradient) and the fake 3D
solid cube from the previous exercise, with recognizably shaped gray
“shadows” underneath

(d) Two stick-figure people, one wearing a black hat and another with long
hair

(e) A simple skyline scene, where black buildings with yellow-lit windows
are set against a dark blue sky (Tip: Try using a loop that draws build-
ings with random sizes and window counts from left to right.)

29. Implement a simple pixel-based paint program web page using the canvas

element. Allow the user to choose colors and brush sizes. Color and brush size

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 570 — #108
✐

✐

✐

✐

✐

✐

570 CHAPTER 9 Graphics and Animation

selection may be implemented outside of the canvas, using buttons, drop-
down menus, or other appropriate web page elements with corresponding
event handlers.

30. If you have access to a touch event-capable web browser, implement a similar
painting web page as in the previous exercise, but have it respond to touch
events rather than mouse events.

31. If you have access to a multitouch event-capable web browser, enhance the
touch-capable painting web page from the previous exercise so that multiple
touches generate multiple simultaneous brush strokes, based on the place-
ment and location of the user’s fingers.

32. Gather up some photos of yourself, your family, or your friends, and arrange
them into a photo collage on a canvas element.

How does this approach to arranging and scaling images compare to using
absolutely-positioned img elements using HTML and CSS only?

33. Many 2D games rely on sprites for their displays. A sprite is a reusable image
that is moved and drawn within a 2D game scene as needed. The images
within the sprites themselves can be swapped out to simulate motion within
the sprite, such as a character’s legs while walking or a vehicle’s turning
wheels. The technique very closely resembles traditional cel animation.

Find a library of emoticon images on the web and use those images to imple-
ment an animated emoticon face on a canvas element. Emoticon image sets
are ideal for this kind of work (without having to draw your own sprites),
since they are similarly sized and come in large varieties. Remember that
you can use slices or subimages, which will come in handy if an emoticon
image set is provided as one large image file.

Make sure to respect any copyrights or licenses for the images you find (i.e.,
don’t post your assignment for public consumption unless you are allowed to
do so).

34. Package and adapt the five JavaScript object-drawing programs that you
implemented in Exercise 27 into reusable functions that behave well when
used with transforms. Demonstrate your functions’ reusability by repeatedly
calling them from a program that makes interesting changes to the active
canvas transformation, similarly to what was shown in Section 9.4.8.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 571 — #109
✐

✐

✐

✐

✐

✐

Exercises 571

35. The so-called instance transformation is a very prominent one in computer
graphics. It enables the arbitrary positioning, orienting, and resizing of any
shape, all without distorting it. It is, in fact, a “combo” transformation
consisting of a scaling, a rotation, and a translation, in that order.7

Implement an instanceTransformation function that can take any canvas

graphics routine, represented as a function, and apply the instance trans-
formation before drawing it, using a given scale factor, rotation angle, and
(x, y) location:
✞ �

var instanceTransformation = function (graphicsDrawingFunction,
scale, rotation, xTranslation, yTranslation) {

// Scale, then rotate, then translate...
// ...then draw (i.e., call graphicsDrawingFunction).
//
// And remember to leave things as you found them!

};
✝ ✆

Show that your implementation works correctly by drawing a “scene” by
using a series of instanceTransformation calls:
✞ �

instanceTransformation(square, 2, Math.PI / 4, 10, 10);
instanceTransformation(circle, 1, 0, 50, 25);
instanceTransformation(square, 4, 0, 20, 40);

✝ ✆

36. Rewrite the skyline scene you implemented in Exercise 28 so the entire sky-
line is drawn using repeated calls to a single drawBuilding function, with
transformations doing the repositioning and resizing.

37. Take one of the sunset scenes you implemented in Exercise 28 and rewrite it
so it presents an animated sunset: show the sun starting higher in the sky,
and move it until it sinks below the horizon. For full effect, you may want to
gradually change the color of the ground and the sky as the sun sets.

7Mathematically, the transformations are written right to left, yielding M = TRS, where M is

the instance transformation, T is translation, R is rotation, and S is scaling. A computer graphics

course will explain everything if you are interested.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 572 — #110
✐

✐

✐

✐

✐

✐

572 CHAPTER 9 Graphics and Animation

38. Implement a canvas-based “eyes” program that draws two cartoon eyes with
pupils that follow the mouse cursor within the canvas element. The pupils
should move independently, resulting in cross-eyes when the cursor is between
the two eyes.

If this description isn’t sufficiently clear, look up the xeyes program on the
Internet.

39. Implement a canvas-based analog clock program. The clock should have a
second hand and correspond to the computer’s system time. Be creative with
the clock’s design and appearance—it’s a graphics exercise after all!

40. Implement a canvas-based program that displays raindrops falling from top
to bottom. Make sure they accelerate as they fall, the way real raindrops do
(i.e., their velocity increases at a constant rate).

41. Make the raindrops program you wrote in Exercise 40 interactive: moving
the mouse horizontally within the canvas element should change the size of
the raindrops, while moving the mouse vertically should change the speed
with which they fall.

42. Implement a canvas-based “hangman” program. While the cumulative “hang-
man” picture should most certainly be done within the canvas element, you
might prefer to implement the interactive section, consisting of letter se-
lection and the word-in-progress, with non-canvas HTML and CSS. This
implementation choice is up to you.

Since this chapter is about computer graphics, after all, feel free to exercise
some creativity with your hangman scene; you don’t have to limit yourself
to stick figures and line drawings.

43. Write both SVG markup and JavaScript programs for the visuals requested
in Exercise 25. As before, exact dimensions, positions, and color values are
up to you, as long as what you draw corresponds reasonably to the plain
English descriptions.

44. Write JavaScript programs for the visuals requested in Exercise 26. As before,
exact dimensions, positions, and color values are up to you, as long as what
you draw corresponds reasonably to the plain English descriptions.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 573 — #111
✐

✐

✐

✐

✐

✐

Exercises 573

Which of these visuals, if any, can also be directly declared using SVG
markup? Characterize the differences between the programmed (JavaScript)
and markup (SVG) versions.

45. Write both SVG markup and JavaScript programs for the objects requested
in Exercise 27. As before, exact dimensions, positions, and color values are
up to you, as long as what you draw corresponds reasonably to the plain
English descriptions.

46. Write both SVG markup (except for the skyline) and JavaScript programs
for the visuals requested in Exercise 28. As before, exact dimensions, posi-
tions, and color values are up to you, as long as what you draw corresponds
reasonably to the plain English descriptions.

How would the SVG markup version of Exercise 28 differ from the pro-
grammed JavaScript version?

47. Implement an SVG-based analog clock program, functionally similar to the
canvas-based clock from Exercise 39.

48. Implement an SVG-based raindrop program, functionally similar to the canvas-
based version from Exercise 40.

49. Implement an SVG-based interactive raindrop program, functionally similar
to the canvas-based version from Exercise 41.

50. Implement an SVG-based “hangman” program, functionally similar to the
canvas-based version from Exercise 42. For the SVG version, it may be easier
to also implement letter selection and word-in-progress within SVG, so take
a second look at that if you opted for HTML elements in Exercise 42.

51. Modify the SVG case study’s .svg file (Section 9.5.2) so it displays two
editable curves. Are changes to the curve-editor.js script necessary? What
would it take to modify the case study so it displays any particular number
of Bézier curves?

52. The C curve to command of the path element can take more than two control
points and vertices, to produce a single curve with any number of twists and
turns. Modify the SVG case study in Section 9.5.2 so it displays and edits
a three-vertex, three-control point curve. What would it take to modify the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 574 — #112
✐

✐

✐

✐

✐

✐

574 CHAPTER 9 Graphics and Animation

case study so it displays and edits a curve with any particular number of
vertices and control points?

53. Overall, what types of graphics applications are better served by a 2D canvas

element? What graphics applications are done best with SVG?

54. Would you say that having WebGL “ride off” the canvas element is a good
idea? Compare this design decision, for example, to one where a hypothetical,
completely different canvas3d element is used for 3D graphics on a web page.

The remaining exercises all involve making modifications to the WebGL case
study from Section 9.6.2, available online at http://javascript.cs.lmu.edu/

webgl-sierpinski. Download/copy its HTML and JavaScript source code to your
computer prior to taking on the following tasks.

55. Modify the WebGL case study code so that, instead of the vanilla alert

that pops up if a WebGL context could not be retrieved, a friendlier, less-
disruptive element appears right within the page.

While this task does not particularly require WebGL, it does give you some
practice with displaying useful feedback when unexpected situations take
place. Make sure the element is prominent enough to be noticed, but not
too intrusive or intimidating. An explanation of the problem would be good;
you can use the “three-point rule” for good error messages: state the error,
state its most likely possible cause(s), and state possible courses of action for
rectifying the error (e.g., “Please use a web browser that supports WebGL
3D graphics.”).

Test your modified WebGL case study on a web browser that you know does
not support WebGL, or, in the absence of such a browser, just program an
artificial condition that makes the error message element appear.

56. Modify the WebGL case study code so the program displays a solid tetrahe-
dron instead of the Sierpinski gasket. You may need to review Section 9.6.2
to recall how the divideTetrahedron function works.

57. The WebGL drawArrays function is the function that finally triggers the
actual display of the 3D object onto the canvas element. Its first argument,
given in the WebGL case study code as gl.TRIANGLES, tells drawArrays how
to render every three vertices as a solid triangle.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 575 — #113
✐

✐

✐

✐

✐

✐

Exercises 575

(a) Replace gl.TRIANGLES with gl.LINES. What appears on the web page
instead?

(b) Do some Internet research on the other values that drawArrays will
accept for its drawing mode outside of gl.TRIANGLES and gl.LINES.
Play with those values and re-run the Sierpinski gasket every time to
see how it is drawn for each value.

58. This line in the fragmentShaderSource variable determines the color of the
Sierpinski gasket:
✞ �

vec4 color = vec4(1.0, 0.0, 0.0, 1.0);
✝ ✆

The color is given as an RGBA value with individual color components rang-
ing from 0.0 to 1.0 (review Section 9.1.2 if needed). Modify the code so the
drawn 3D object appears green.

59. Modifying the WebGL case study code so the program directly assigns the
vertices and normals variables as shown below produces a 10 × 10 square
that can be rotated in 3D:
✞ �

var vertices = [
-5, 5, 5, -5, 5, -5, -5, -5, -5, -5, -5, -5, -5, -5, 5, -5,
5, 5

];

var normals = [
-1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0

];
✝ ✆

The arrays are somewhat verbose because the WebGL case study expects the
data to be given in terms of triangles. Thus, the “square” is really given as
two triangles, one with vertices (−5, 5, 5), (−5, 5,−5), and (−5,−5,−5), and
another with vertices (−5,−5,−5), (−5,−5, 5), and (−5, 5, 5). The triangle
vertices are given in counterclockwise order with respect to the “fronts”
of the triangles, which face the same direction as the negative x-axis, or
the vector 〈−1, 0, 0〉. For reasons we cannot explain now, this vector must
be repeated once for every vertex of every triangle, and the normals array
therefore repeats 〈−1, 0, 0〉 six times.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

✐

✐

“80609˙CH09˙Dionisio” — 2011/8/29 — 9:22 — page 576 — #114
✐

✐

✐

✐

✐

✐

576 CHAPTER 9 Graphics and Animation

(a) Modify your copy of the WebGL case study code so it now draws the
square shown above. You may delete the divideTetrahedron function
entirely if you wish.

(b) Extrapolate these arrays so the program draws a 10×10×10 cube that
is centered on the origin. Tip: Work things out on a piece of graph
paper first.

60. Assign mouseover and mouseout event handlers to the WebGL case study
such that the WebGL canvas background becomes an opaque dark blue when
the mouse hovers over it, then reverts to transparent when the mouse leaves.
Hint: Recall/review what was said about the WebGL context’s clearColor
property.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 3723

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

