
	 	 1

PART

1
This book is divided into two distinct parts: the first focusing primarily (though not
exclusively) on the theoretical, design, and preparatory issues surrounding engine devel-
opment, and the second focusing mainly on the implementation of a game engine in the
C++ language, along with a selection of other tools and libraries. That is not to say that
the first part does not feature implementation work, nor that the second does not feature
design work, but simply that each part has a key focus to which other subject matter in
that section is subordinate.

The first part of this book lays the foundations for the implementation work that is to
follow in Part 2. Specifically, it centers on theory, design, and preparation work. The the-
ory comes in Chapter 1 where questions such as the following are asked and addressed:
“What is a game engine?” “How does an engine differ from a video game as a whole?”
“Do all games need an engine?” “What is the essence of a game engine, and what are its
essential building blocks?” These are all essential questions in that they must be answered
in order for engine development to be possible. After all, how can a developer build a
solid and reliable engine when they are not entirely sure what an engine is? The first
chapter also touches on issues of design, planning, and time management. It enumerates
the core components of an engine one by one and plans for their development. Some of
these issues might at first seem tedious or boring in comparison to the “real” coding and
implementation work, but as I hope these pages (as well as experience) will show, the
importance of solid planning cannot be underestimated when developing engines.

The second chapter moves away from the issues of theory and design and into the
world of preparation—that is, preparation for engine development. Specifically, that
chapter highlights a series of C++ IDEs that can be used for coding engines, and also a
series of core and cross-platform libraries common in the world of game development.
It examines some important and useful classes from the STL library and explains
the purpose and usefulness of the game loop messaging structure for games, game
engines, and real-time applications. In short, Chapters 1 and 2 are intended to contain
enough of the foundations necessary to get started with game engine development.
The design and theory does not end with those chapters, but it is only after those
chapters that implementation can begin. Thus, it is now time to turn to the first chapter
and to explore the theory behind game engines.

Theory, Design, and
Preparation

84515_CH01_FINAL.indd 1 6/7/10 10:35:12 AM

84515_CH01_FINAL.indd 2 6/7/10 10:35:13 AM

	 	 3

“Engine [noun] A machine with moving parts that converts power into motion”—
Oxford English Dictionary

“Engine [noun] A software system, not a complete program, responsible for a
technical task” —Wiktionary

Overview
After completing this chapter, you should:

Understand what is meant by the term “game engine”•	

Appreciate the distinction between game engine, game content, and •	
development tools

Recognize the benefits of dividing engines into manager components•	

Appreciate the most common managers•	

Understand render managers, audio managers, and resource managers•	

Understand the benefits of engines to game development•	

1.1  Game Engines■■

The contemporary video game market is filled with an almost countless number of
both free and commercial games, and almost all of these games are powered by an
engine: a game engine. To say that a game is “powered” by an engine is not to speak
literally, like saying that a computer is powered by electricity or a car by fuel. It is to
speak metaphorically; it is to say that a game (any game) depends on its engine and
that without it the game could neither be developed nor executed. However, it does
not mean that a game is equal to its engine, that each are one and the same thing. For
this reason, by creating an engine and only an engine a developer does not thereby
create a complete game. This is because an engine is only a part of a game, just as the
heart is only a part of a body. But like the heart, the engine is an essential part. Thus,
a game is greater than its engine, but the engine must be in place before the game can

Game Engines—Details
and Design1

84515_CH01_FINAL.indd 3 6/7/10 10:35:13 AM

4	 Chapter  1   Game Engines—Details and Design 	

be executed and played on the system of an end user, whether that system be a PC,
Mac, Wii™, hand-held device, or some other platform. In addition, the engine must be
in place before much of the game development work can occur, since the engine often
acts as a pivot around which the team workflow revolves. The engine, for example,
often influences the structure and arrangement of the graphics files produced by artist,
and the file formats and timing of audio files produced by sound artists and musicians.
It follows then that the engine is the heart (or core, or kernel ) of both the game and its
development, and thus the building of an engine by the programmers of the team is
one of the first steps taken in the development of a game.

It is not enough, however, for a complete understanding of a game engine to say
that it is the heart of a game, because this definition is insubstantial and vague insofar
as it says nothing specific about the qualities of an engine. Such a definition mentions
only how an engine relates to a game, and says nothing particular about what an engine
does or is, or is not. At this point, however, a problem arises for both the author and
the reader. The problem is that there exists no uncontroversial or unchallenged industry
standard meaning for the term “game engine.” It does not have a precise meaning like
“graphics” or “sound,” or a mathematical definition. Rather, the term “game engine”
is deployed loosely in many contexts by many developers to convey a general sense
or idea rather than a precise meaning about which there can be no negotiation. Having
said this though, it is not an entirely subjective term either, like the term “beautiful,”
whose meaning depends almost entirely on individuals with regard to their specific
tastes and preferences. “Game engine” then is not simply a catch-all buzzword used to
mean whatever any individual chooses at any one moment. True, as a term its meaning
is not precise, but still it conveys a sense and idea that is held in common between
game developers. This sense and idea is the primary subject of this chapter, along with
some general but important guidelines for the design of game engines. To help convey
the idea and importance of the game engine, this chapter turns now to explain histori-
cally how the concept of an engine developed in order to serve the specific needs of
game developers looking to increase their productivity in a competitive market.

1.2  Game Engine as an Idea■■

Let us imagine that during the mid-1980s a small independent video game studio—let’s
call it Studio X—opened its doors with much celebration as it publicly announced its
latest platformer game to be released by the end of that same year. (Platformer games
typically are those in which the gamer navigates a character through a level filled
with enemies by running and jumping across both static and moving platforms and
ledges. Examples of such games include Sonic the Hedgehog™, Super Mario Bros.®,
and LittleBigPlanet.™ See Figure 1.1). Once the end of that year arrived, the developer
released their game with much success and to the delight of happy gamers worldwide.

84515_CH01_FINAL.indd 4 6/7/10 10:35:13 AM

	 1.2  Game Engine as an Idea	 5

Their game outsold a rival platformer game developed by competitive Studio Y. In
fact, their game became so successful that a sequel was demanded and subsequently
planned by Studio X. Studio X, however, began development of the sequel with a time
management problem. It was their aim from the outset to capitalize on the success
of the first game by releasing the sequel soon after and ahead of another competitive
release planned by their rival. But during the development of the first game, Studio
X had not considered the possibility that their work back then might help them in
the future with the work for their sequels. Instead, they had considered each game a
self-contained entity, and their development as separate and distinct processes. For
them, each game was to be built from the ground upward, and no work from one game
could possibly be of use for the next since each of them were to be released and sold as
separate games. Consequently, the developers of Studio X began work for their sequel
as they had for their first game. The result was that the second was in development
for no less time than the first, and thus it was released into stores later than expected,
accompanied by much disappointment for fans of the series and by much loss of sales
for Studio X, which had on this occasion been upstaged by their faster rival Studio Y.

Figure 1.1  �Screenshot from a platformer game. Image from Darwin the Monkey, courtesy of
Rock Solid Games.

84515_CH01_FINAL.indd 5 6/7/10 10:35:14 AM

6	 Chapter  1   Game Engines—Details and Design 	

Studio Y produced their sequel in half the time it took to make the first. They did
not achieve this by cutting corners; each member of the team worked just as hard as
they always did. Nor did they achieve this by reducing the length or the content of the
sequel; their sequel was bigger and better than the previous game. They achieved this
by realizing when developing their first game that many properties and features com-
mon to all games and to all platformer games can be extracted from their particular
contexts and given an abstract form. An abstract form is one that has lost all reference
to concrete circumstances and applies not only to one game but to all. The developers
realized, for example, that all platformer games featured a player character subject to
the laws of physics, who after jumping in the air must eventually fall to the ground
because of gravity. This rule would apply just as much to the sequel as to the first
game. Similarly, both games would need to play sound and music in connection with
events in the game, and though the sounds themselves may vary between games, the
mechanisms by which the sounds are played to the speakers need not change since
they do not depend on the content of the sounds; a single audio framework plays
many sounds. Thinking in this way, Studio Y recognized not only some but almost all
the generalizable components of a game and integrated them into a single system
that could be reused to produce many different games. They knew that game content
(graphics and sound) would probably need to be created on a game-by-game basis,
since games look and sound different, but they realized also that there existed a frame-
work (or infrastructure) supporting this content, and that it was this that was mostly
generalizable. This framework or system is known as a game engine.

1.3  Game Engines and Game Development■■

The idea that the game engine is the heart or core containing almost all the generaliz-
able components that can be found in a game implies that there are other parts of a
game and of game development that do not belong to the engine component on account
of their specific, nongeneralizable nature. These parts include at least game content and
game development tools.

1.3.1  Game Content
Game content refers to all the particulars featured in any one game. Graphics and sound
are the most notable members of this category. Any two platformer games, for example,
might share many features in common such as enemies that run, jump, and shoot at the
player character. Yet these enemies differ between games in both appearance and sound
according to the work produced by the art and sound departments of a team, respectively.
The graphics and sound, therefore, are specific to a game and are thus part of what makes
a game unique. The engine is distinguished from content because it is concerned less

84515_CH01_FINAL.indd 6 6/7/10 10:35:14 AM

	 1.3  Game Engines and Game Development	 7

Figure 1.2  The game engine and its relationship to other parts of game development.

with the features unique to any one game than with the features common to all games.
For this reason, game content and content creation tools are not the main concern of this
book, though they are important for game development generally (see Figure 1.2).

1.3.2  Game Development Tools
The distinction between a game engine on the one hand and the game content on the
other raises a problem for developers regarding the relationship between the two. The
game engine represents everything that is abstract and applicable to all or most games,
and the content that is specific to either a single game or a few games. On its own, the
engine is only an active collection of rules, forms, and algorithms, and the content is only
an inactive collection of images and sounds. Since each of these two parts focuses on a
different aspect of the game, a bridge or protocol must be formed between them to allow
the engine access to the content so as to form a complete game. It is not enough for a
game developer to create the engine and content in isolation from each other, because
then the engine has nothing to act upon and the content nothing to bring it to life. For
example, an artist might use graphics software to produce some images of weapons
and objects for a platformer game, but still the engine is required to direct and move
those objects in accordance with gravity or inertia or any other laws appropriate for the
game and circumstances. Images and sounds and other content do not act of their own
accord; an engine is required to act on them. To build the bridge between game engine
and game content during the development process, game development tools are required.
These tools take the form of level editors, map generators, mesh exporters, path planners,
and others. Their primary purpose is to connect the inactive game content to the active

84515_CH01_FINAL.indd 7 6/7/10 10:35:15 AM

8	 Chapter  1   Game Engines—Details and Design 	

powers of the engine. A level editor, for example, is usually a custom-made GUI tool
used by the developer to produce a text or binary file. This file is fed into the engine
and defines a specific arrangement of much of the game graphics (trees, walls, doors, and
floors, etc.) into an integrated layout of levels and environments with which players will
contend as they play the game. Game tools occupy an important place in the relationship
between engine and content, and are considered in further detail later in this book. For
the purposes of this chapter, it is enough to state that game tools—whatever their form—
represent the link between engine and content.

1.4  Game Engines in Detail■■

Thus far the game engine has been conceived as a single and enclosed entity represent-
ing everything that is generalizable about games and as having a relationship to two
other entities—game content and game development tools. However, at present no
specific mention has been made of the architecture of an engine, nor of those features
of all games that are sufficiently generalizable to warrant their inclusion in an engine.
There has been the occasional allusion to formulas, laws, and physics to convey a
sense of some of the things that are likely to belong, but no detailed list of features or
explanation of their significance. This section considers some of the features of games
most likely to be found in a contemporary game engine and how those features are
built into the engine so as to work in unison according to an optimal design. However,
this examination by no means represents an exhaustive catalog of all features found in
all engines. This is partly because there are too many features and engines to examine
in one book and partly because there is no one consensus among all game developers
regarding what is and is not an appropriate feature for an engine. One developer might
propose an architecture and a set of features almost wholly at odds with those proposed
by another, yet neither of them can be said to be entirely wrong in their choices. It is for
this reason that any one engine cannot be said to be entirely better or worse than
another, but only more or less appropriate for a specific purpose. To some degree,
the range and kind of features a developer chooses to put into an engine reflects their
professional experience, design preferences, and business intentions. Unsurprisingly,
there is great variation among the many engines in circulation today.

1.4.1  The Architecture and Features of a Typical Engine
Given what this section has already said about variation among engines in the industry,
it might seem something of a contradiction to talk of a typical game engine. Indeed,
no engine can strictly be said to be typical where there are no formal or even informal
standards governing engine design. However, the term “typical” is used here to refer to
a basic engine design that offers enough general components and features to allow the

84515_CH01_FINAL.indd 8 6/7/10 10:35:15 AM

	 1.4  Game Engines in Detail	 9

creation of a wide range of games, including platformers, first-person shooters, sports
sims, and RPGs (role playing games). These features and components are listed below
and explained briefly, and later chapters of this book will tackle the implementation
of these items. That is, they will explain how to create these features and components
using a range of development tools common in the contemporary games industry.

Architecturally speaking, a typical game engine is divided by a programmer into
many components called managers or subsystems, and each manager is responsible
for a range of distinct features related to one another by kind. The physics manager, for
example, is responsible for making sure that the laws of physics are applied to the objects
of the game, ensuring that gravity pulls airborne objects downward to a ground surface
and that collisions between objects are detected to prevent any solid objects from moving
through walls or other solids when they are not supposed to. Likewise, an error manager is
trusted with the specific duty of catching run-time errors and exceptions when they occur,
and with subsequently responding to them appropriately, either by logging their occur-
rence in a local text file or by cleanly terminating the application. This division of engine
work by kind into corresponding manager components, as opposed to sharing the work in
one manager, is useful for a programmer because it allows them to segment and sort their
source code across many files according to the number of managers supported. By arrang-
ing the physics code into one group of files, the error handling code into another, and all
other sets of features according to their kind, the programmer can separate and manage
vast sections of code according to their functional status. If a run-time error occurs in
the game that is related to physics, then the programmer can know without searching the
engine source code that debugging is to begin in the physics manager and nowhere else.
The remainder of this section details some manager components commonly found in
game engines. Before continuing, please see Exercise 1.1, then consider Figure 1.3.

NOTE. In terms of object-oriented programming, a manager is often
implemented as a singleton class, and it exposes its features through the
class methods and properties. A singleton class is a class that allows one
and only one instance of itself to be instantiated at any one time. Thus, by
implementing each manager of an engine as a singleton class, the program-
mer can be certain that there can be no more than one instance of each
manager in memory at run time.

List at least three other managers that you think would be suitable for almost any
game engine, and why. State at least two reasons for each answer. Answers to
this question are to be found throughout subsequent sections of this chapter.

EXERCISE 1.1

84515_CH01_FINAL.indd 9 6/7/10 10:35:15 AM

10	 Chapter  1   Game Engines—Details and Design 	

Resource Manager

The term “resources” (or “assets”) is used by developers in the games industry to refer
collectively to all the digital materials used by a game. Many nondigital resources may
indeed be expended by developers in the production of a game—from blood and sweat
to money and tears—but these are not what is meant by a game developer when they
speak of resources in a technical sense. Here, “resources” refer more narrowly to two
kinds of digital materials essential for games: media data and behavioral data. Media
data refers to all the graphics, sound, animations, and other digital media that is to
be featured in a game. Their purpose ultimately is to define how a game looks and
sounds at run time. In contrast, behavioral data defines how a game is to be behave
at run time, such as whether it should run in full-screen or windowed mode, or run
at one resolution rather than another, or use rather than avoid subtitles. Typically,
all resources—both media data and behavioral data—are encoded into files that are
loaded by the engine at run time as appropriate. Media resources such as graphics are
encoded into image files in formats such as PNG, JPG, and TGA, audio into files such
as OGG, WAV, and MP3, and animation data into custom-made formats or video for-
mats such as AVI and MPG. Behavioral data usually is in the form of text, sometimes
in standard text format, but more often in the format of XML or CFG, and sometimes
in the format of a scripting language.

To emphasize the importance of resources generally for video games, it is helpful
to consider an imaginary game and the extent of its dependency on resource files. For
example, a first-person shooter game, such as Half-Life® or Unreal® Tournament, is
one in which the player controls the actions of a character and views the game environ-
ment as seen from their eyes. Throughout the game the player is called upon for various
reasons to shoot enemies and objects and to avoid dangers. Such a game as this might
depend on a wide range of resources for its existence, including all of those mentioned
above. For graphics, it will require at least the images necessary to display the envi-
ronment and characters, from the leaf images used for the trees and shrubbery that are
scattered around the game arena to leather images used to texture the clothing of all the
characters found there. For sound, it will likely require upbeat background music tracks
to be played to enhance the intensity of the atmosphere, and the sound of laser beams
or gunfire to be played when weapons are fired, and many others. Finally, for config
files it will require a settings file to define the resolution and subtitle modes to be used
by the game on execution and a level data file to define the layout of both the game
environment and the objects in that environment such as the positions of walls and
doors, ceilings and floors, and power-ups and bonuses. In sum, the typical video game
and the game engine find themselves dependent for their existence on potentially many
megabytes or gigabytes worth of resources of varying kinds. Any particular game will
inevitably be dependent on a particular set of resources whose content varies accord-
ing to the game, but any game is dependent on some set of resources regardless of

84515_CH01_FINAL.indd 10 6/7/10 10:35:16 AM

	 1.4  Game Engines in Detail	 11

their content. Thus, as resources apply to games generally they are therefore pertinent
to game engines, and the sheer number and variety of resources, compounded with the
extent of the dependency of the game on those resources, introduces for the developer
a management problem. That is, it signals a need for a manager component in the form
of a resource manager to govern the relationship between the engine and the resources.
It is the duty of the resource manager therefore to: (1) identify and distinguish between
all the resources available to the game, (2) both load and unload the resources to
and from their files and in and out of memory, and (3) ensure that no more than one
instance of each resource exists in memory at any one time. Resource managers and
their implementation are considered later in this book.

Render Manager

It is generally accepted that almost all games feature graphics, either 3D, 2D, or a
mixture of both. It has been stated already that it is the role of the resource manager to
load graphics from files on a storage device and into memory ready for use as appro-
priate, but this process alone is not enough for the graphics resources themselves to
be displayed to the gamer on-screen. For this to occur, a second process must access
the loaded graphics resource in memory and then draw it to the screen via the graph-
ics hardware. For example, having loaded a rectangle of pixels from an image file via
the resource manager, the engine must then decide how those pixels are plotted to the
screen where they will be seen. Should the pixels be drawn as they appear in the file?
Or should they be animated? And where on the screen should they appear—at the top
left corner, at the bottom right, or elsewhere? Should the image be reversed, tiled, or
repeated across the screen? These and many other questions relate to the drawing of
pixels to the screen. This process is achieved by way of a graphics rendering library
such as OpenGL® or DirectX or SDL, and any one of these in combination with a
series of other functions and tools a developer may create from the rendering infra-
structure of the game engine, or the render manager. It is the job of the render manager
to (1) efficiently communicate between the engine and the graphics hardware installed
on the end user system, (2) render image resources from memory to the screen, and
(3) set game resolution. Render managers and their implementation are considered
later in this book.

Input Manager

Games in the contemporary market differ almost as much in their support for input
devices as they do in their use of resources. The term “input device” is used by develop-
ers to signify any unit of hardware the player may use to communicate their intentions
to the engine for the purposes of the game. Most PC games expect to receive input
via keyboard and mouse devices, console games via remote controllers such as game
pads, joysticks, and dance mats, and portable games via the device keypad. The range

84515_CH01_FINAL.indd 11 6/7/10 10:35:16 AM

12	 Chapter  1   Game Engines—Details and Design 	

of input methods accepted by any game and the extent to which each is supported dif-
fers between games and platforms. However, across almost all games and platforms
there is a general need for a mechanism both to receive and to respond to user input,
regardless of the specificity of the device or of the input provided and regardless of the
particular response appropriate. Thus, in the context of game engines a developmental
need arises for an input manager component. The purpose of this component is to:
(1) read user input at run time from the entire range of devices accepted by the game
and (2) encode that input into a single, device-independent form. That is, to generate
from the input a raw interpretation that does not depend for its being understood by
the developer or the engine on knowledge of any specifics regarding input hardware.
Input managers and their implementation are considered later in this book.

Audio Manager

What is true for the render manager regarding graphics resources and their rendering
to their screen is generally true for the audio manager regarding audio resources and
their playback on the system speakers. Though the content of audio differs according
to particular games, almost all games demonstrate a generalizable need to play audio.
Audio here means both music and sound. The former refers to audio usually longer
than 1 minute in duration and intended to be played on a loop, and as the background
for any other audio that may play. The latter refers to short sounds (sound effects
or SFX) such as door knocks, gunshots, and footsteps that are likely to be played in
response to particular events in the game, and are less than 1 minute in duration. It is
the role of the resource manager to load audio from files to memory, but it is the role
of the audio manager to accept those resources and to play them to the speakers as
appropriate for the game. The audio manager is also responsible for: (1) communicat-
ing between the game and audio hardware, (2) setting the overall game volume levels,
and (3) applying effects to sound such as fade effects, pan effects, and echo effects.
Audio managers and their implementation are considered later in this book.

Error Manager

The esteemed computer scientist Edsger W. Dijkstra once suggested that “Testing
shows the presence, not the absence of bugs.” This quote often serves to remind
developers of the limits of their debugging tools and of their ability to claim certainty
regarding the absence of bugs in their software. It serves to emphasize that even when
the debugging and testing of an application has uncovered no bugs a developer is
still not in a position to claim that their software is bug free. This is because saying,
“There are no bugs,” is not the same as saying, “No bugs were found.” Debugging and
testing might uncover no bugs in an application, but that application might not have
undergone all possible tests in all possible scenarios, and thus the developer is not in a
position to know for certain that all bugs in their software were found and eliminated

84515_CH01_FINAL.indd 12 6/7/10 10:35:16 AM

	 1.4  Game Engines in Detail	 13

based on their tests. On this basis, the most a developer is entitled to claim is that
no bugs were found in their software, and this limitation applies as much to the engine
developer as to any other developer. For this reason, the developer of game engines
should accept the possibility that bugs might exist in their engine and in their game no
matter how thorough they consider their testing methods to be. If it were possible for
a developer to find and eliminate bugs in their software and to know at the same time
with complete certainty that no other bugs existed, then perhaps there would be good
reason to build game engines that were error free, that is, an engine in which the
occurrence of an error was an impossibility. Such an error-free engine would make the
developer’s life easier insofar as they would have no need to code an error manager to
detect and report errors, because errors could not happen. But since the author of this
book knows of no such means of achieving certainty regarding the absence of bugs in
software, the possibility of error holds for each and every engine developed. Hence, a
game engine needs an error manager. The purpose of the error manager is to: (1) detect
or “catch” run-time exceptions in a game, (2) handle those exceptions gracefully if
and when it encounters them to avoid sudden and shocking crashes to the desktop by
displaying a message box before exiting to alert the user to the occurrence of an error,
(3) log the occurrence of an error in a human readable text file report that can be sent
by the user to the developer to aid the latter in repairing the problem, and (4) identify
and mark each error with a unique identification number that can be printed in an error
message dialog or in the error log report. This allows the developer to isolate each
error and its possible causes. Error managers and their implementation are considered
later in this book.

Scene Manager

In theater or film, a “scene” refers to the stage or place where actors and props come
together in action. Much of this meaning applies to the concept of a scene in games. The
general outline of a game engine as presented so far in this chapter has conceived of a
resource manager for loading resources from disk and into memory, a render manager
for drawing graphics resources to the screen via graphics hardware, an audio manager for
playing audio resources to the speakers via sound hardware, and an input manager
for reading user input from input devices. These components are essential for almost all
games to the extent that a game could not exist in a playable form without them, but even
together they are not enough to create a complete game. It is not enough, for example, to
load a graphics resource from a file only to display it anywhere and anyhow on the screen,
without reason; nor is it enough to load an audio resource to likewise play it anyhow and
meaninglessly on the speakers. Between the loading of resources from files and their pre-
sentation in the game there exists an intervening layer of management, of composition.
This layer decides how resources are associated to one another and used so as to give
them meaning for the player in relation to the actions and events of the game with the

84515_CH01_FINAL.indd 13 6/7/10 10:35:17 AM

14	 Chapter  1   Game Engines—Details and Design 	

passing of time. Consider the famous puzzle game of blocks called Tetris®. In Tetris, the
player controls the movement of a series of falling blocks arranged in sequences of four
that drop one after another from the top of the screen to the bottom across a game board.
The aim is to manipulate each arrangement as it falls by moving it left or right or by
rotating it 90 degrees so that as the arrangement reaches the bottom it forms a complete
horizontal line of blocks in combination with the other arrangements that fell previously.
The line that is formed should contain no gaps if it is to be valid, and valid lines disap-
pear, leaving vacant space for new blocks. As time progresses in the game, the tempo
increases, meaning the player encounters every new arrangement of blocks faster than the
one before. Consequently, they are forced to think faster as to how to arrange the blocks
that fall. The game is lost if a new block falls and finds no vacant space on the board in
which it can be held. This game has a precise set of rules governing how the resources
of the game relate both to each other and to the input provided by the player. The game
does not play sounds arbitrarily or display graphics anywhere on-screen without reason;
rather, the graphics resources are used to represent the falling blocks of the board and
are positioned and deployed on-screen in combination with the sound according to the
rules of the game. In this way, the resources of the game are managed into a meaningful
scene, just as a puppet-master deploys his puppets on stage not randomly and meaning-
lessly according to his fancies, but coherently and sensibly according to the logic of the
story to be performed for the audience. The purpose of the scene manager then is to
synthesize (or coordinate) the resources of the engine according to the logic of the game,
to tie together the work of many managers. Its duty is in part to put on the show for the
player. To do this, the scene manager must perform many tasks, some of which include:
(1) communicating between many managers such as the render manager, audio manager,
resource manager, and others, (2) keeping track of time for the purposes of firing events
and coordinating motion on the objects of the game, and (3) enumerating the objects of
the scene to allow the developer to iterate and access each of them independently. Scene
managers and their implementation are considered later in this book.

Physics Manager

It was mentioned earlier in this chapter that the physics manager is a component of the
engine dedicated to applying the laws of physics to the objects of the game, or more
accurately to applying forces and torques to objects of the scene. This physics man-
ager is responsible for, among other things, applying the effects of gravity and inertia
to game objects. The former ensures that specified airborne objects—such as chairs,
apples, and people but not airplanes, fairies, and dragons—are pulled downward to a
ground surface. The latter ensures that moving objects such as cars and runaway mine
carts do not come unrealistically to complete and immediate stops whenever they
cease to accelerate, but gradually reduce their speed over time toward a stopped state
to imitate the real-world resistance of mass to changes in its state of motion. At this

84515_CH01_FINAL.indd 14 6/7/10 10:35:17 AM

	 1.4  Game Engines in Detail	 15

point, however, it is important to note a distinction between the physics manager and
the scene manager. Given what has been said so far of the duties of both with regard
to their role as controllers of the behavior of game objects, it might at first seem that
the two managers should be merged into one or that one makes the other redundant.
If the purpose of the physics manager is to control at run time the behavior of objects
and their relationships in the scene according to the laws of physics, then what place
can there be for the scene manager as a controller of behavior? This question draws
attention to the distinction between game logic (or game rules) on the one hand and
physics on the other, the former being the responsibility of the scene manager. The
scene manager, for example, does not apply gravity or inertia to objects, nor does it
govern their behavior according to any physical laws; that duty falls to the physics
manager. Rather, it governs scene objects according to the rules of the game as they
are determined by the developers thinking outside the laws of physics. The rules of
the game define the unwritten contract between the gamer and the game, and they are
outside the laws of physics in the sense that the laws of physics could alter while the
rules of the game remained unchanged. They refer to the terms of play and stipulate
the conditions and circumstances that constitute a win for the player and those that
constitute a loss, and further stipulate the range and kinds of actions a player may
pursue to achieve a win. For example, there might be a set of rules governing a plat-
former game that specify that a loss is incurred by the player whenever their health
drops below zero as the result of attack from an enemy or of damage from environ-
mental hazards, and that a win is incurred whenever they reach the end of a level and
defeat in combat the end-of-level boss. Thus, the objects and relationships of a scene
in a game are governed by at least two sets of independent laws, those of physics
and those of the game. The enforcement of the latter is one of the duties of the scene
manager, and the enforcement of the former is the sole duty of the physics manager.
Physics managers and physics handling is considered later in this book via a look at
the Bullet physics library.

Scripting Manager

A game engine is typically built by programmers into a standalone executable file or a
DLL (dynamic link library) using a compiled language such as C++ or C#. Using
a compiled language to build an engine into machine code form often improves its
run-time performance but poses a number of challenges to developers seeking to cus-
tomize it according to their needs after it is compiled. It has been stated already that
one means by which a general engine is customized for a specific game is game tools.
These tools are used by developers to produce a variety of text and configuration files
detailing the content and behavior specific to a game, and are fed into the engine to
customize it accordingly. By accepting many of its instructions through external and
independent game files, the compiled engine remains open to the developer in the

84515_CH01_FINAL.indd 15 6/7/10 10:35:17 AM

16	 Chapter  1   Game Engines—Details and Design 	

sense that its behavior can be changed without having to be recompiled. This is use-
ful if only because an engine that can be customized without having to be recompiled
does not depend on its original creators and their knowledge of its internal mechanics
for its use. That is, an open engine can be adapted and customized by any who learn
the protocol between the engine and its files. For example, an artist can change the
graphics used by the engine simply by substituting a new set of graphics files for
the previous set, and a programmer or gamer can change the run-time resolution of
the engine by editing the settings of a resolution configuration file before the engine is
executed. Thus, the primary reason for an engine’s dependency on external files is to
produce in it an openness not only to the creators of the engine but also to other devel-
opers and even to some gamers; to produce a flexible capacity to be easily customized
or scripted for specific games without having to be recompiled. Thus, an engine is
said to be scriptable if it has the general ability to adjust its behavior according to a set
of instructions in a file. Those instructions may take many forms, and engines differ
in the extent of their support for any specific instruction set. Some engines support
instructions written in plain English or in XML, and others support those written in
established scripting languages and frameworks such as Lua and Python™ to allow
for greater control. The choice of language to be supported by any particular engine
often reflects the popularity and currency of the language as well as the professional
preferences and intentions of the developers, but whichever language is chosen there
is a general need to manage the support of that language and its interaction with the
engine. This need therefore creates a demand for a scripting manager, and the job of
this manager is to: (1) expose a subset of classes and functions of the engine and allow
access to them through the scripting language and (2) read and process instructions in
a file and respond accordingly. Scripting managers and details surrounding scripting
generally are discussed later in this book when considering game tools.

1.5  Game Engines—Necessary Conditions■■

Games are said by many developers to be powered by engines, and by this they mean
that an engine is a necessary condition for a game, that a game cannot run without an
engine. True, any specific game is more than an engine because it contains unique
content or dressing such as graphics and sound, but the engine represents the integrated
framework on which this dressing hangs. Conceiving of the engine as a framework or
a necessary condition for a game is useful for identifying whether or not any library
or software is or is not a game engine. Presented with any library or software, such as
DirectX or OpenGL, the developer can proceed to ask, “Can I make a game with this
and only this?”; if the answer to that question is in the affirmative, then it either is or
can be used as a game engine. It is not enough to show that only in combination with
other tools could it make games. The software as it is must be capable of producing

84515_CH01_FINAL.indd 16 6/7/10 10:35:18 AM

	 1.5  Game Engines—Necessary Conditions	 17

games on its own merits to be considered a game engine. Thus, OpenGL is a dedicated
graphics API but not a game engine. Its purpose is to render graphics to the screen via the
hardware. No doubt many engines have made use of this library for that specific purpose,
but despite this, OpenGL as a library is not responsible for other features of the engine
that are equally essential for creating a game—from the playing of game audio to the
handling of game logic. In diagram form, the engine exists on a level above dedicated
libraries; the engine represents the integrated core of a game that delegates essential
duties via manager components to dedicated libraries. Consider Figure 1.3.

It has been established that a game depends on an engine for its existence, and
that the essence of an engine (that which makes it what it is) consists of its ability to
make games. This ability and its scope are determined in large part by the manager
components from which the engine is made, some of which were discussed in the pre-
vious section. The render manager determines the feature set for graphics rendering,
the audio manager for audio playback, and each other manager for its corresponding
duties. Thus, the manager components represent the chief executors of the engine
and are the primary means by which engine work is performed. For this reason, the
managers are to the engine as the engine is to the game; that is, they are the core. A
game depends on its engine and the engine on its managers. Having determined this,

Figure 1.3  Common set of managers for a game engine.

84515_CH01_FINAL.indd 17 6/7/10 10:35:18 AM

18	 Chapter  1   Game Engines—Details and Design 	

the question then arises as to where the line is drawn between that which is an engine
and that which is not in terms of the number and type of managers supported. Is it
possible, for example, to conceive of a minimum collection of managers that together
warrant the title of “engine” and from which no manager could be removed without
compromising that title? In other words, what is the simplest engine possible? Such an
engine might be suitable for creating only the simplest of games, but even so can it be
defined? If so, which managers would belong to that group of essential managers?

It is helpful for a developer to think about this question of essential managers
because the answer (if there is a definitive one) points to only those managers that
are essential for all games and which mark the starting point for the development of
almost all engines. Some might be tempted to argue that all engine managers listed in
this chapter thus far are equally essential for all games. They might argue that many
games from platformers to sports sims require a physics manager, render manager,
audio manager, and many other managers, and that for this reason these managers are
essential in any engine that is intended to create those games. But this response misses
the point of the exercise. It is no doubt the case that all managers are important for
specific games, but it does not follow from this that all managers are equally important
for all games. A physics manager is unquestionably important to a game dependent on
physical reactions, such as a flight simulation or a car racing game, but not so impor-
tant for a card matching game or a game of Tetris or any other game that does not
depend on physical laws. Thus, many games exist that do not require an engine with a
physics manager. However, it seems unlikely that even the simplest game could exist
without an input manager to receive and process user input from a game controller.
The task of this section is one of reduction: to create a list of only those managers
essential to all games under all circumstances, or essential to the simplest possible
game. Having created such a list and confirmed those managers as the foundation
of almost all engines, the developer can then recognize the implementation of those
managers as the starting point or the first steps on a long road of engine development.
In short, with the exception of design, engine development begins with the implemen-
tation of its essential managers. So what are the essential managers? Unfortunately,
there is no definitive answer to this question, or at least none of which the author
is aware. But for the purposes of this book, concerned as it is with the creation of a

List three managers you think should be included in the essential managers group,
and state two reasons for each manager to justify your choice. Answers can be found
in the following section. Your answers might differ from mine, but it is important
to have reasons for your choices and to appreciate the reasons for mine.

EXERCISE 1.2

84515_CH01_FINAL.indd 18 6/7/10 10:35:19 AM

	 1.6  Principles of Engine Design—RAMS	 19

general engine suitable for many game genres, it is nonetheless possible to build a
rough argument as to which managers ought to be included.

1.5.1  Game Engines—Essential Managers
Any manager component may belong to either one of two groups: essential and nones-
sential. This status relates to its significance for the simplest of games. If the simplest of
games cannot exist without a given manager, then that manager is an essential manager.
The simplest of engines contains no more than the essential managers, and thus the
implementation of these managers represents the starting point of engine development
after the stage of design. The following table lists each manager stated earlier in this
chapter that is essential, and for each states two reasons why it is an essential manager.

Essential Manager Reasons

Render Manager
Status: Essential

1.	 Game must show on-screen any essential error messages and
information.

2.	 Almost all games feature graphics.

Resource Manager
Status: Essential

1.	 The resource manager processes resources, and the render
manager depends on resources. The render manager is essential,
and therefore the resource manager is essential.

2.	 The game must keep a list of all resources for the purposes of
memory management and tidy resource unloading.

Scene Manager
Status: Essential

1.	 The scene manager is required to organize the contents of a scene.
Without this manager, resources cannot be placed in meaningful
arrangements.

2.	 Scene managers are essential for monitoring game logic.

Input Manager
Status: Essential

1.	 A game depends in part on the input received from the user,
and an engine processes user input through the input manager.
Therefore, the input manager is an essential manager.

2.	 User input is necessary to terminate the execution of a game once
the gamer has finished playing.

Error Manager
Status: Essential

1.	 Developers cannot be sure their engine is free of all errors through
standard debugging techniques. Therefore, an error manager is
required to handle errors as they occur.

2.	 The error manager might need to notify users of errors.

Table 1.1  Essential Managers

1.6  Principles of Engine Design—RAMS■■

The essential managers are the render manager, input manager, scene manager, error
manager, and resource manager. Having identified these as the essential managers of
an engine, it might appear that there is little else for an engine developer to do but to

84515_CH01_FINAL.indd 19 6/7/10 10:35:19 AM

20	 Chapter  1   Game Engines—Details and Design 	

get started with the implementation of those managers. However, there are a variety
of approaches a programmer might take toward coding their implementation. Some
might choose to implement each manager as a unique class with its own methods and
properties; since the managers must interact with one another, the developer might
choose to expose the interface of each manager to every other and to have much direct
interaction between them. This solution offers the benefit of performance insofar as
each manager has a direct channel of communication to every other, but introduces
the disadvantage that each manager must have at least some knowledge concern-
ing the implementation of other managers. Another solution might be to choose an
indirect route: to hide each manager class from every other and to code an additional
messenger class to pass data between the managers as each goes about its work. These
two scenarios represent only two possible responses to the one problem of communi-
cation between managers, and this design problem is only one among many. The solu-
tion to that problem, and those to many others, will influence the form the managers
take when implemented. Again, there is no clear-cut right or wrong solution to many,
if any, of the design problems an engine developer encounters, but this is not the same
as saying that all solutions are equally suitable or that all approaches are just as good.
A person might offer 10 different answers to a sum and all of them might be wrong,
but some are closer to being right than others. There is simply not enough space in
this book or perhaps in any book to address all the possible design problems that
might arise and their corresponding solutions, even if all such problems and solutions
could be listed. So instead of attempting to list specific design problems and to pro-
vide specific solutions, this book details a number of general key design principles or
ideas that can be found to underpin the design and implementation of many success-
ful engines used in the contemporary games industry. These ideas detail some sound
design advice concerning game engines. Having understood these principles or guide-
lines, the reader can then proceed to apply them to their specific case and to tailor their
solutions accordingly. They can do this by considering all the solutions before them
and establishing which of them most coincides with the design principles. The four
design principles listed here can be remembered using the acronym RAMS. Many
successful engines are designed according to the principles of recyclability, abstract-
ness, modularity, and simplicity. Each of these is now considered in more detail.

1.6.1 R ecyclability
Materials and processes that can be reused are considered recyclable, and the more
frequently and widely they can be reused the more recyclable they are. For game
engines, recyclability often relates to efficiency. An engine that consumes half the
resources of another engine to perform the same tasks with equal or greater reliability
and efficacy is generally considered to be the more efficient of the two. Efficiency
refers to the relationship between the resources available and the performance and

84515_CH01_FINAL.indd 20 6/7/10 10:35:19 AM

	 1.6  Principles of Engine Design—RAMS	 21

reliability that result from the processing of those resources. A process is efficient
to the extent that it achieves success and reliability from a given set of resources,
and efficiency is improved when success and reliability are increased from the same
resources or from fewer resources. For this reason, efficiency is improved through
recycling whenever a single set of resources can be used and reused for two or more
processes successfully and reliably. This is because performance is increased without
a corresponding aggregate increase in resources. To illustrate, consider recycling in
the context of a resource manager for an engine that is being used to power an imagi-
nary platformer game. The purpose of the resource manager is to load game resources
from files on disk or over the Internet and into memory, either system memory or
other hardware memory. Resources include graphics, audio, and many other file types.
During the playing of the game, the player enters a level and encounters five enemy
alien clones, all of which look alike. At this point, the resource manager is called upon
to load the graphics resources to be used as a representation of the alien creatures. The
resource manager can achieve this using one of at least two solutions: It can either
load five copies of the same image, one for each alien, or it can load one copy of the
same image and share this among all like aliens. The second solution is the more effi-
cient because it acknowledges the principle of recyclability by using a single resource
for many instances. In short, the principle of recyclability advises the developer to
consider each and every resource as precious and scarce, and to design the engine so
as to extract the greatest use from the fewest resources possible.

1.6.2  Abstractness
Abstraction is about producing generalizations from particular instances, and is a mat-
ter of degree. A complete abstraction can be identified by its entirely general nature,
for it makes no reference to particular cases. The idea of a chair, for example, is an
abstraction because it refers to chairs in general and not to any particular chair. Earlier
in this chapter, a number of engine managers were identified; these managers repre-
sent abstractions also because a general demand for them was identified after having
considered particular details. From those particular details, a general and nonparticular
idea of a manager was constructed, and from the idea of a manager, various kinds of
managers were further created. The manager components and even the concept of an
engine itself are all abstractions because they are ideas that do not depend on any
particular instances but apply to all games as such. The principle of abstraction is
useful for engine developers because by designing the components of an engine to
be abstract rather than particular, the developer increases their field of use or their
versatility. Their versatility is proportional to their degree of abstraction. A render
manager, for example, can be used by any and all games, because rendering is an
essential process for all games. In contrast, a text render manager is less abstract than a
render manager and is consequently more limited in its scope, assuming its purpose is

84515_CH01_FINAL.indd 21 6/7/10 10:35:20 AM

22	 Chapter  1   Game Engines—Details and Design 	

to render text and only text. In short, the principle of abstraction encourages the engine
developer to think in the abstract. It encourages them to start by identifying the many
particular and contingent needs of one case and then to proceed from this by building
abstractions that serve not only the needs of that one particular case but all the like
needs of all cases. Thus, the building of abstractions serves to increase the versatility
of the engine, and the greater the degree of abstraction, the greater the versatility.

1.6.3  Modularity
The idea of a general manager component is the result of abstraction. Having identi-
fied this idea, it can be developed further through the principle of modularity. The idea
that a manager should be an independent and functional unit responsible for a range of
related tasks is often what results when the engine is thought of in terms of modularity.
The principle of modularity begins by considering an entity as a working whole (such
as a game engine) and then proceeds to subdivide that entity into constituent pieces
or modules, each according to their purpose or function as it relates to the whole. In
object-oriented programming, each module is likely to correspond to a class. By the
principle of modularity, each module is seen as both independent and exchangeable:
independent in the sense that it is distinguished from other modules by its function,
for no two modules belonging to the same whole should share the same function,
and exchangeable in the sense that it could be replaced without damage to the whole
only by another module that serves the same function. For example, the principle of
modularity when applied to the idea of a game engine will likely subdivide the engine
into manager components, each manager satisfying a unique function. The purpose of
the render manager is to render, and the audio manager to play audio, and the error
manager to log errors. None of these modules can be removed without reducing the
whole, and no module can be replaced safely except by another that performs the same
function. Two modules that perform the same function need not be entirely identical in
every respect; their function and output might be identical, but their working methods
might differ for there may be many roads to the same destination. The purpose of the
render manager is to draw graphics via the hardware to the screen, and it may achieve
this single end via OpenGL, SDL, DirectX, or another graphics library. A render
manager that uses the DirectX library, for example, is not substitutable for an input
manager or a resource manager since their functions differ by kind from that of a render
manager, but is substitutable for another render manager regardless of which graphics
library that manager chooses to use to fulfill its purpose. In this way, modularity allows
an engine to be divided into modules, and further allows each module to hide the details
and specifics of its implementation while maintain its relationship to the whole. The
module does this by focusing on achieving a single purpose. In short, the principle
of modularity recommends that an entity is subdivided into smaller functional units.
Doing this offers the developer several design and debugging benefits: (1) It allows

84515_CH01_FINAL.indd 22 6/7/10 10:35:20 AM

	 1.6  Principles of Engine Design—RAMS	 23

them to translate complex entities into a collection of simpler ones according to the
contribution each makes to the whole, and (2) it allows them to make changes to the
implementation of specific modules without affecting the implementation of other
modules, or the working of the whole.

1.6.4  Simplicity
The 14th-century Franciscan Friar William of Occam stated that “entities should not be
multiplied unnecessarily.” This principle is now known as Occam’s Razor; applied to
game engines it might be translated into the mantra “Keep things simple.” In this case,
keeping things simple refers to a process of reductionism, which refers to the process
of reducing the complex into the simple. This works side by side with modularity.
The principle of modularity recommends that an engine be subdivided into a range
of modules each according to their unique function, and the principle of simplicity is
there to remind us that the process of modularity must be performed with simplicity
in mind, with the aim of reductionism. Modularity combined with simplicity suggests
that an engine should not only be subdivided into modules, but should be subdivided
into the fewest number of modules possible. This process might proceed as follows: A
developer identifies each and every entity or part belonging to an engine, and then for
each entity he pauses to ascertain its function. If any two or more parts share the same
function or very similar functions, then these parts are candidates for amalgamation.
That is, these parts should be merged together into a larger unit. Having performed this
process once for each unit, the developer should repeat the procedure for the newly
formed larger units, and then repeat it continually on each level upward until the pro-
cess yields no more amalgamations. At this point, the developer can know that the
simplest arrangement of modules has been found. In short, the principle of simplicity,
when applied appropriately, ensures that an engine features no entities sharing the same
purpose or very similar purposes. This is helpful for a developer because working with
the simplest arrangements ensures they not duplicate work across modules and that they
work only with the minimum number of modules necessary for the purpose.

Answer the following questions and then compare your answers to those given.

Q1. How does the principle of simplicity differ from the principle of
modularity?

A1. Modularity suggests that an entity should be subdivided into smaller
functional components. Simplicity suggests that entities should not be multi-
plied unnecessarily. When the principle of modularity is combined with that

EXERCISE 1.3

84515_CH01_FINAL.indd 23 6/7/10 10:35:20 AM

24	 Chapter  1   Game Engines—Details and Design 	

1.7  Engines in Practice■■

Engines designed according to the four principles of modularity, simplicity, recycla-
bility, and abstractness often benefit the game developer and prove cost effective in
many ways, including the following: (1) By their versatility, since they can be used
for many games and for many games across many genres, (2) by their increasing the
reliability of games, since a bug corrected in the engine potentially represents a fix
for all games powered by that engine, and (3) by their saleability, since an engine can
be licensed by its creator to one or more other developers for the purpose of powering
their games. Having mentioned some of the business and developmental benefits an
engine offers to a developer, this section briefly explores some of the commercial and
free and open source engines in use in the contemporary games industry.

of simplicity, the advice is that an entity should be subdivided into the fewest
number of functional components possible.

Q2. Does creating a DirectX render manager and an OpenGL render manager
for the same engine violate the principle of simplicity?

A2. No. The two modules share the purpose but are implemented differently, and
thus are exchangeable modules. The existence of two render managers where
one uses OpenGL and another DirectX is useful for creating cross-platform
engines. The Windows version might use the DirectX render manager, and the
Linux® or Mac version might use the OpenGL render manager.

Select at least two engines from the list below and visit their home pages to read
their features and technical information. On the basis of this information, list for
each engine chosen all the manager components you can identify.

Torque 3D and Torque 2D
Developer: GarageGames®

License: Commercial
Website: http://www.garagegames.com
Supported Platforms: PC Windows, Mac, iPhone®, Wii, Xbox® 360

Torque 3D and Torque 2D are two separate commercial game engines created and
licensed by GarageGames for the creation of 3D and 2D games, respectively. The
engines are not genre specific, meaning that they are intended for the creation

EXERCISE 1.4

84515_CH01_FINAL.indd 24 6/7/10 10:35:21 AM

	 1.7  Engines in Practice	 25

of games of various genres and run on several platforms. This engine has been
involved in the development of at least the following games: Marble Blast,
Wildlife Tycoon, ThinkTanks, and The Destiny of Zorro.

Unity Engine
Developer: Unity Technologies
License: Commercial
Website: http://unity3d.com/
Supported Platforms: PC Windows, Mac, iPhone, Wii, web deployment

The Unity Engine is a proprietary game engine designed and licensed by Unity
Technologies for the creation of 3D games on a variety of platforms, including
Windows and Mac. It can also be used to create web browser games. The Unity
Engine has been used for the development of several games, including Open
Fire and Tiki Magic Mini Golf.

Crystal Space
Developer: Crystal Space Team
License: Open source, free
Website: http://www.crystalspace3d.org
Supported Platforms: PC Windows, Linux, FreeBSD®

Crystal Space is a free, open source, and cross-platform engine developed by the
Crystal Space Team that allows developers to produce 3D games on a variety of
platforms. This engine powers many games, both commercial and free, includ-
ing The Icelands and the free RPG PlaneShift (http://www.planeshift.it).

Game Blender
Developer: Blender Foundation
License: Open source, free
Website: http://www.gameblender.org
Supported Platforms: PC Windows, Linux, and Mac

Game Blender is a comparative newcomer among the free, open source, and
cross-platform game engines designed for producing 3D games. It is associated
with the Blender 3D rendering software.

ClanLib
Developer: ClanLib Team
License: Open source, free
Website: http://www.clanlib.org/
Supported Platforms: PC Windows, Linux, and Mac

ClanLib is a free, open source, and cross-platform game engine developed by the
ClanLib team for creating 2D games for Windows, Linux, and Mac.

84515_CH01_FINAL.indd 25 6/7/10 10:35:21 AM

26	 Chapter  1   Game Engines—Details and Design 	

Novashell
Developer: Robinson Technologies
License: Open source, free
Website: http://www.rtsoft.com/novashell/
Supported Platforms: PC Windows, Linux, and Mac

Novashell, a free, open source, and cross-platform game engine developed by
Robinson Technologies, ships with an integrated level editor for importing game
art and defining game maps.

Multimedia Fusion
Developer: Clickteam
License: Commercial
Website: http://www.clickteam.com
Supported Platforms: PC Windows

Multimedia Fusion is a commercial, proprietary game engine designed and
licensed by Clickteam for the creation of 2D games for Windows.

Leadwerks
Developer: Leadwerks Software
License: Commercial
Website: http://www.leadwerks.com
Supported Platforms: PC Windows

Leadwerks is a proprietary game engine designed and licensed by Leadwerks
Software for the creation of 3D games on the Windows platform. It can work
with a variety of programming languages including C++, C#, and BlitzMax.

1.8  Chapter Summary■■

This chapter sought to provide some answers to several key questions. These were: (1)
what is a game engine? (2) what does a game engine do? (3) how does a game engine
differ from other parts of a game and the game development process? and (4) what are
the core components of a game engine? Before proceeding to the next chapter, try to
provide a one-paragraph answer to each of those questions. Then check your answers
by reading the appropriate chapter sections. The next chapter considers the first stage
of engine implementation: the configuration of an IDE and a project in preparation
for coding.

84515_CH01_FINAL.indd 26 6/7/10 10:35:21 AM

	 1.8  Chapter Summary	 27

In short, this chapter has detailed the following:

A game engine is an integrated framework of managers and components •	
designed for powering games.

Game engines are often designed according to the four principles of: •	
abstractness, modularity, simplicity, and recyclability.

Each manager of an engine is an exchangeable unit serving a unique purpose. •	
Managers include but are not limited to render managers, audio managers, input
managers, and scene managers.

There are many third-party managers available in the contemporary games •	
industry, some are commercial and others are free and open source. These can
be used to produce games.

84515_CH01_FINAL.indd 27 6/7/10 10:35:21 AM

84515_CH01_FINAL.indd 28 6/7/10 10:35:21 AM

