
PART I
FUNDAMENTALS

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

Chapter 1

Introduction

Language to the mind is more than light is to the eye.

— Anne Sullivan in William Gibson’s The Miracle Worker (1959)

That language is an instrument of human reason, and not merely a
medium for the expression of thought, is a truth generally admitted.

— George Boole (1854)

A language that doesn’t affect the way you think about programming,
is not worth knowing.

— Alan Perlis (1982)

“I don’t see how he can ever finish, if he doesn’t begin.”

— Alice, in Alice’s Adventures in Wonderland (1895) by Lewis Carroll

WELCOME to the study of programming languages. This book and course
of study is about programming language concepts—the building blocks of

languages.

1.1 Text Objectives

The objectives of this text are to:

• Establish an understanding of fundamental and universal language concepts
and design/implementation options for them.

• Improve readers’ ability to understand new programming languages and
enhance their background for selecting appropriate languages.

• Expose readers to alternative styles of programming and exotic ways of
performing computation so to establish an increased capacity for describing
computation in a program, a richer toolbox of techniques from which to solve
problems, and a more holistic picture of computing.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

4 CHAPTER 1. INTRODUCTION

Since language concepts are the building blocks from which all languages are
constructed and organized, an understanding of the concepts implies that, given a
(new) language, one can:

• Deconstruct it into its essential concepts and determine the implementation
options for these concepts.

• Focus on the big picture (i.e., core concepts/features and options) and not
language nuisances or minutia (e.g., syntax).

• Discern in which contexts (e.g., application domains) it is an appropriate or
ideal language of choice.

• In turn, learn to use, assimilate, and harness the strengths of the language
more quickly.

1.2 Chapter Objectives

• Establish a foundation for the study of concepts of programming languages.
• Introduce a variety of styles of programming.
• Establish the historical context in which programming languages evolved.
• Establish an understanding of the factors that influence language design and

development and how those factors have changed over time.
• Establish objectives and learning outcomes for the study of programming

languages.

1.3 The World of Programming Languages

1.3.1 Fundamental Questions

This text is about programming language concepts. In preparation for a study of
language concepts, we must examine some fundamental questions:

• What is a language (not necessarily a programming language)? A language is
simply a medium of communication (e.g., a whale’s song).

• What is a program? A program is a set of instructions that a computer
understands and follows.

• What is a programming language? A programming language is a system of
data-manipulation rules for describing computation.

• What is a programming language concept? It is best defined by example.
Perhaps the language concept that resonates most keenly with readers at
this point in their formal study of computer science is that of parameter
passing. Some languages implement parameter passing with pass-by-value,
while others use pass-by-reference, and still other languages implement
both mechanisms. In a general sense, a language concept is typically a
universal principle of languages, for which individual languages differ in
their implementation approach to that principle. The way a concept is
implemented in a particular language helps define the semantics of the

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.3. THE WORLD OF PROGRAMMING LANGUAGES 5

language. In this text, we will demonstrate a variety of language concepts
and implement some of them.

• What influences language design? How did programming languages evolve
and why? Which factors form the basis for programming languages’ evolu-
tion: industrial/commercial problems, hardware capabilities/limitations, or
the abilities of programmers?

Since a programming language is a system for describing computation, a
natural question arises: What exactly is the computation that a programming
language describes? While this question is studied formally in a course on
computability theory, some brief remarks will be helpful here. The notion of
mechanical computation (or an algorithm) is formally defined by the abstract
mathematical model of a computer called a Turing machine. A Turing machine is
a universal computing model that establishes the notion of what is computable.
A programming language is referred to as Turing-complete if it can describe any
computational process that can be described by a Turing machine. The notion of
Turing-completeness is a way to establish the power of a programming language
in describing computation: If the language can describe all of the computations
that a Turing machine can carry out, then the language is Turing-complete.
Support for sequential execution of both variable assignment and conditional-
branching statements (e.g., if and while, and if and goto) is sufficient to
describe computation that a Turing machine can perform. Thus, a programming
language with those facilities is considered Turing-complete.

Most, but not all, programming languages are Turing-complete. In conse-
quence, the more interesting and relevant question as it relates to this course of
study is not what is or is not formally computable through use of a particular
language, but rather which types of programming abstractions are or are not
available in the language for describing computation in a more practical sense.
Larry Wall, who developed Perl, said:

Computer languages differ not so much in what they make possible,
but in what they make easy. (Christiansen, Foy, Wall, and Orwant, 2012,
p. xxiii)

“Languages are abstractions: ways of seeing or organizing the world according
to certain patterns, so that a task becomes easier to carry out. . . . [For instance,
a] loop is an abstraction: a reusable pattern” (Krishnamurthi 2003, p. 315).
Furthermore, programming languages affect (or should affect) the way we think
about describing ideas about computation. Alan Perlis (1982) said: “A language
that doesn’t affect the way you think about programming, is not worth knowing”
(Epigraph 19, p. 8). In psychology, it is widely believed that one’s capacity to think
is limited by the language through which one communicates one’s thoughts. This
belief is known as the Sapir–Whorf hypothesis. George Boole (1854) said: “Language
is an instrument of human reason, and not merely a medium for the expression
of thought[; it] is a truth generally admitted” (p. 24). As we will see, some
programming idioms cannot be expressed as easily or at all in certain languages
as they can in others.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

6 CHAPTER 1. INTRODUCTION

A universal lexicon has been established for discussing the concepts of
languages and we must understand some of these fundamental/universal terms
for engaging in this course of study. We encounter these terms throughout this
chapter.

1.3.2 Bindings: Static and Dynamic

Bindings are central to the study of programming languages. Bindings refer to the
association of one aspect of a program or programming language with another.
For instance, in C the reserved word int is a mnemonic bound to mean “integer”
by the language designer. A programmer who declares x to be of type int in
a program (i.e., int x;) binds the identifier x to be of type integer. A program
containing the statement x = 1; binds the value 1 to the variable represented
by the identifier x, and 1 is referred to as the denotation of x. Bindings happen at
particular times, called binding times. Six progressive binding times are identified
in the study of programming languages:

1. Language definition time (e.g., the keyword int bound to the meaning of
integer)

2. Language implementation time (e.g., int data type bound to a storage size such
as four bytes)

3. Compile time (e.g., identifier x bound to an integer variable)
4. Link time (e.g., printf is bound to a definition from a library of routines)
5. Load time (e.g., variable x bound to memory cell at address 0x7cd7—can

happen at run-time as well; consider a variable local to a function)

Ò static bindings Ò

Ó dynamic bindings Ó
6. Run-time (e.g., x bound to value 1)

Language definition time involves defining the syntax (i.e., form) and semantics
(i.e., meaning) of a programming language. (Language definition and description
methods are the primary topic of Chapter 2.) Language implementation time is
the time at which a compiler or interpreter for the language is built. (Building
language interpreters is the focus of Chapters 10–12.) At this time some of the
semantics of the implemented language are bound/defined as well. The examples
given in the preceding list are not always performed at the particular time in
which they are classified. For instance, binding the variable x to the memory cell
at address 0x7cd7 can also happen at run-time in cases where x is a variable local
to a function or block.

The aforementioned bindings are often broadly categorized as either static or
dynamic (Table 1.1). A static binding happens before run-time (usually at compile
time) and often remains unchangeable during run-time. A dynamic binding
happens at run-time and can be changed at run-time. Dynamic binding is also

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.3. THE WORLD OF PROGRAMMING LANGUAGES 7

Static bindings occur before run-time and are fixed during run-time.
Dynamic bindings occur at run-time and are changeable during run-time.

Table 1.1 Static Vis-à-Vis Dynamic Bindings

referred to as late binding. It is helpful to think of an analogy to human beings.
Our date of birth is bound statically at birth and cannot change throughout our
life. Our height, in contrast, is (re-)bound dynamically—it changes throughout our
life. Earlier times imply safety, reliability, predictability (i.e., no surprises at run-
time), and efficiency. Later times imply flexibility. In interpreted languages, such
as Scheme, most bindings are dynamic. Conversely, most bindings are static in
compiled languages such as C, C++, and Fortran. Given the central role of bindings
in the study of programming languages, we examine both the types of bindings
(i.e., what is being bound to what) as well as the binding times involved in the
language concepts we encounter in our progression through this text, particularly
in Chapter 6.

1.3.3 Programming Language Concepts

Let us demonstrate some language concepts by example, and observe that they
often involve options. You may recognize some of the following language concepts
(though you may not have thought of them as language concepts) from your study
of computing:

• language implementation (e.g., interpreted or compiled)
• parameter passing (e.g., by-value or by-reference)
• abstraction (e.g., procedural or data)
• typing (e.g., static or dynamic)
• scope (e.g., static or dynamic)

We can draw an analogy between language concepts and automobile concepts.
Automobile concepts include make (e.g., Honda or Toyota), model (e.g., Accord
or Camry), engine type (e.g., gasoline, diesel, hybrid, or electric), transmission
type (e.g., manual or automatic), drivetrain (e.g., front wheel, rear wheel, or all
wheel), and options (e.g., rear camera, sensors, Bluetooth, satellite radio, and GPS

navigation). With certain concepts of languages, their options are so ingrained
into the fiber of computing that we rarely ever consider alternative options. For
instance, most languages provide facilities for procedural and data abstraction.
However, most languages do not provide (sophisticated) facilities for control
abstraction (i.e., developing new control structures). The traditional if, while,
and for are not the only control constructs for programming. Although some
languages, including Go and C++, provide a goto statement for transfer of control,
a goto statement is not sufficiently powerful to design new control structures.
(Control abstraction is the topic of Chapter 13.)

The options for language concepts are rarely binary or discretely defined. For
instance, multiple types of parameter passing are possible. The options available

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

8 CHAPTER 1. INTRODUCTION

and the granularity of those options often vary from language to language and
depend on factors such as the application domain targeted by the language and
the particular problem to be solved. Some concepts, including control abstraction,
are omitted in certain languages.

Beyond these fundamental/universal language concepts, an exploration of a
variety of programming styles and language support for these styles leads to
a host of other important principles of programming languages and language
constructs/abstractions (e.g., closures, higher-order functions, currying, and first-
class continuations).

1.4 Styles of Programming

We use the term “styles of programming” rather than perhaps the more
common/conventional, but antiquated, term “paradigm of programming.” See
Section 1.4.6 for an explanation.

1.4.1 Imperative Programming

The primary method of describing/affecting computation in an imperative style of
programming is through the execution of a sequence of commands or imperatives
that use assignment to modify the values of variables—which are themselves
abstractions of memory cells. In C and Fortran, for example, the primary mode
of programming is imperative in nature. The imperative style of programming
is a natural consequence of basing a computer on the von Neumann architecture,
which is defined by its uniform representation of both instructions and data in
main memory and its use of a fetch–decode–execute cycle. (While the Turing
machine is an abstract model that captures the notion of mechanical computation,
the von Neumann architecture is a practical design model for actual computers.
The concept of a Turing machine was developed in 1935–1937 by Alan Turing and
published in 1937. The von Neumann architecture was articulated by John von
Neumann in 1945.)

The main mechanism used to effect computation in the imperative style
is the assignment operator. A discussion of the difference between statements
and expressions in programs helps illustrate alternative ways to perform such
computation. Expressions are evaluated for their value, which is returned to
the next encompassing expression. For instance, the subexpression (3*4) in the
expression 2+(3*4) returns the integer 12, which becomes the second operand
to the addition operator. In contrast, the statement i = i+1 has no return value.1

After that statement is executed, evaluation proceeds with the following statement
(i.e., sequential execution). Expressions are evaluated for values while statements are
executed for side effect (Table 1.2). A side effect is a modification of a parameter to
a function or operator, or an entity in the external environment (e.g., a change
to a global variable or performing I/O, which changes the nature of the input

1. In C, such statements return the value of i after the assignment takes place.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.4. STYLES OF PROGRAMMING 9

Expressions are evaluated for value.
Statements are executed for side effect.

Table 1.2 Expressions Vis-à-Vis Statements

stream/file). The primary way to perform computation in an imperative style of
programming is through side effect. The assignment statement inherently involves
a side effect. For instance, the execution of statement x = 1 changes the first
parameter (i.e., x) to the = assignment operator to 1. I/O also inherently involves
a side effect. For instance, consider the following Python program:

x = i n t(input())
prin t (x + x)

If the input stream contains the integer 1 followed by the integer 2, readers
accustomed to imperative programming might predict the output of this
program to be 2 because the input function executes only once, reads the
value 1,2 and stores it in the variable x. However, one might interpret the
line print (x + x) as print (int(input()) + int(input())), since x
stands for int(input()). With this interpretation, one might predict the output
of the program to be 3, where the first and second invocations to input() read
1 and 2, respectively. While mathematics involves binding (e.g., let x = 1 in . . .),
mathematics does not involve assignment.3

The aforementioned interpretation of the statement print (x + x) as
print (int(input()) + int(input())) might seem unnatural to most
readers. For those readers who are largely familiar with the imperative style of
programming, describing computation through side effect is so fundamental to
and ingrained into their view of programming and so unconsciously integrated
into their programming activities that the prior interpretation is viewed as
entirely foreign. However, that interpretation might seem entirely natural to a
mathematician or someone who has no experience with programming.

Side effects also make a program difficult to understand. For instance, consider
the following Python program:

def f():
global x
x = 2
return x

main program
x = 1
prin t (x + f())

Function f has a side effect: After f is called, the global variable x has value
2, which is different than the value it had prior to the call to f. As a result,
the output of this program depends on the order in which the operands to the

2. The Python int function used here converts the string read with the input function to an integer.
3. The common programming idiom x=x+1 can be confusing to nonprogrammers because it appears

to convey that two entities are equal that are clearly not equal.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

10 CHAPTER 1. INTRODUCTION

addition operator are evaluated. However, the result of a commutative operation,
like addition, is not dependent on the order in which its operands are evaluated
(i.e., 1 + 2 = 2 + 1 = 3). If the operands are evaluated from left to right (i.e., Python
semantics), the output of this program is 3. If the operands are evaluated from
right to left, the output is 4.

The concept of side-effect is closely related to, yet distinct from, the
concept of referential transparency. Expressions and languages are said to be
referentially transparent (i.e., independent of evaluation order) if the same
arguments/operands to a function/operator yield the same output irrespective of
the context/environment in which the expression applying the function/operator
is evaluated. The function Python f given previously has a side effect and the
expression x + f() is not referential transparent. The absence of side effects is
not sufficient to guarantee referential transparency (Conceptual Exercise 1.8).

Since the von Neumann architecture gave rise to an imperative mode of
programming, most early programming languages (e.g., Fortran and COBOL), save
for Lisp, supported primarily that style of programming. Moreover, programming
languages evolved based on the von Neumann model. However, the von
Neumann architecture has certain inherent limitations. Since a processor can
execute program instructions much faster than program instructions and program
data can be moved from main memory to the processor, I/O between the processor
and memory—referred to as the von Neumann bottleneck—affects the speed of
program execution. Moreover, the reality that computation must be described as a
sequence of instructions operating on a single piece of data that is central to the von
Neumann architecture creates another limitation. The von Neumann architecture
is not a natural model for other non-imperative styles of describing computation.
For instance, recursion, nondeterministic computation, and parallel computation
do not align with the von Neumann model.4,5

Imperative programming is programming by side effect; functional pro-
gramming is programming without side effect. Functional programming involves
describing and performing computation by calling functions that return values.
Programmers from an imperative background may find it challenging to conceive
of writing a program without variables and assignment statements. Not only
is such a mode of programming possible, but it leads to a compelling higher-
order style of program construction, where functions accept other functions as
arguments and can return a function as a return value. As a result, a program
is conceived as a collection of highly general, abstract, and reusable functions that
build other functions, which collectively solve the problem at hand.

4. Ironically, John Backus, the recipient of the 1977 ACM A. M. Turing Award for contributions
to the primarily imperative programming language Fortran, titled his Turing Award paper “Can
Programming Be Liberated from the von Neumann Style?: A Functional Style and Its Algebra of
Programs.” This paper introduced the functional programming language FP through which Backus
(1978) cast his argument. While FP was never fully embraced by the industrial programming
community, it ignited both debate and interest in functional programming and subsequently
influenced multiple languages supporting a functional style of programming (Interview with Simon
Peyton-Jones 2017).

5. Computers have been designed for these inherently non-imperative styles as well (e.g., Lisp
machine and Warren Abstract Machine).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.4. STYLES OF PROGRAMMING 11

1.4.2 Functional Programming

While the essential element in imperative programming is the assignment
statement, the essential ingredient in functional programming is the function.
Functions in languages supporting a functional style of programming are first-
class entities. In programming languages, a first-class entity is a program object
that has privileges that other comparable program entities do not have.6 The
designation of a language entity as first-class generally means that the entity can
be expressed in the source code of the program and has a value at run-time that
can be manipulated programmatically (i.e., within the source code of the program).
Traditionally, this has meant that a first-class entity can be stored (e.g., in a variable
or data structure), passed as an argument, and returned as a value. For instance, in
many modern programming languages, functions are first-class entities because
they can be created and manipulated at run-time through the source code.
Conversely, labels in C passed to goto do not have run-time values and, therefore,
are not first-class entities. Similarly, a class in Java does not have a manipulatable
value at run-time and is not a first-class entity. In contrast, a class in Smalltalk does
have a value that can be manipulated at run-time, so it is a first-class entity.

In a functional style of programming, the programmer describes computation
primarily by calling a series of functions that cascade a set of return values to
each other. Functional programming typically does not involve variables and
assignment, so side effects are absent from programs developed using a functional
style. Since side effect is fundamental to sequential execution, statement blocks,
and iteration, a functional style of programming utilizes recursion as a primary
means of repetition. The functional style of programming was pioneered in the
Lisp programming language, designed by John McCarthy in 1958 at MIT (1960).
Scheme and Common Lisp are dialects of Lisp. Scheme, in particular, is an ideal ve-
hicle for exploring language semantics and implementing language concepts. For
instance, we use Scheme in this text to implement recursion from first principles,
as well as a variety of other language concepts. In contrast to the von Neumann
architecture, the Lisp machine is a predecessor to modern single-user workstations.
ML, Haskell, and F# also primarily support a functional style of programming.

Functional programming is based on lambda-calculus (hereafter referred to
as λ-calculus)—a mathematical theory of functions developed in 1928–1929 by
Alonzo Church and published in 1932.7 Like the Turing machine, λ-calculus is
an abstract mathematical model capturing the notion of mechanical computation
(or an algorithm). Every function that is computable—referred to as decidable—by
Turing machines is also computable in (untyped) λ-calculus. One goal of func-
tional programming is to bring the activity of programming closer to mathematics,
especially to formally guarantee certain safety properties and constraints. While
the criterion of sequential execution of assignment and conditional statements
is sufficient to determine whether a language is Turing-complete, languages
without support for sequential execution and variable assignment can also be

6. Sometimes entities in programming languages are referred to as second-class or even third-class
entities. However, these distinctions are generally not helpful.

7. Alonzo Church was Alan Turing’s PhD advisor at Princeton University from 1936 to 1938.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

12 CHAPTER 1. INTRODUCTION

Turing-complete. Support for (1) arithmetic operations on integer values, (2) a
selection operator (e.g., if ¨ ¨ ¨ then ¨ ¨ ¨ else ¨ ¨ ¨), and (3) the ability to define
new recursive functions from existing functions/operators are alternative and
sufficient criteria to describe the computation that a Turing machine can perform.
Thus, a programming language with those facilities is also Turing-complete.

The concept of purity in programming languages also arises with respect
to programming style. A language without support for side effect, including
no side effect for I/O, can be considered to support a pure form of functional
programming. Scheme is not pure in its support for functional programming
because it has an assignment operator and I/O operators. By comparison, Haskell
is nearly pure. Haskell has no support for variables or assignment, but it supports
I/O in a carefully controlled way through the use of monads, which are functions
that have side effects but cannot be called by functions without side effects.

Again, programming without variables or assignment may seem inconceivable
to some programmers, or at least seem to be an ascetical discipline. However,
modification of the value of a variable through assignment accounts for a large
volume of bugs in programs. Thus, without facilities for assignment one might
write less buggy code. “Ericsson’s AXD301 project, a couple million lines of
Erlang code,8 has achieved 99.9999999% reliability. How? ‘No shared state and
a sophisticated error-recovery model,’ Joe [Armstrong, who was a designer of
Erlang] says” (Swaine 2009, p. 16). Moreover, parallelization and synchronization
of single-threaded programs is easier in the absence of variables whose values
change over time since there is no shared state to protect from corruption.
Chapter 5 introduces the details of the functional style of programming. The
imperative and functional modes of programming are not entirely mutually
exclusive, as we see in Section 1.4.6.

1.4.3 Object-Oriented Programming

In object-oriented programming, a programmer develops a solution to a problem
as a collection of objects communicating by passing messages to each other
(Figure 1.1):

I thought of objects being like biological cells and/or individual
computers on a network, only able to communicate with messages
(so messaging came at the very beginning—it took a while to see how
to do messaging in a programming language efficiently enough to be
useful). (Kay 2003)

Objects are program entities that encapsulate data and functionality. An object-
oriented style of programming typically unifies the concepts of data and
procedural abstraction through the constructs of classes and objects. The object-
oriented style of programming was pioneered in the Smalltalk programming
language, designed by Alan Kay and colleagues in the early 1970s at Xerox PARC.

8. Erlang is a language supporting concurrent and functional programming that was developed by
the telecommunications company Ericsson.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.4. STYLES OF PROGRAMMING 13

Figure 1.1 Conceptual depiction of a set of objects communicating by passing
messages to each other to collaboratively solve a problem.

While there are imperative aspects involved in object-oriented programming (e.g.,
assignment), the concept of a closure from functional programming (i.e., a first-class
function with associated bindings) is an early precursor to an object (i.e., a program
entity encapsulating behavior and state). Alan Kay (2003) has expressed that Lisp
influenced his thoughts in the development of object orientation and Smalltalk.
Languages supporting an object-oriented style of programming include Java, C++,
and C#. A language supporting a pure style of object-oriented programming is
one where all program entities are objects—including primitives, classes, and
methods—and where all computation is described by passing messages between
these objects. Smalltalk and languages based on the Common Lisp Object System
(CLOS), including Dylan, support a pure form of object-oriented programming.

Lisp (and the Lisp machine) and Smalltalk were the experimental platforms
that gave birth to many of the commonly used and contemporary language
features, including implicit pointer dereferencing, automatic garbage collection,
run-type typing, and associated tools (e.g., interactive programming environments
and pointing devices such as the mouse). Both languages significantly influenced
the subsequent evolution of programming languages and, indeed, personal
computing. Lisp, in particular, played an influential role in the development of
other important programming languages, including Smalltalk (Kay 2003).

1.4.4 Logic/Declarative Programming

The defining characteristic of a logic or declarative style of programming is
description of what is to be computed, not how to compute it. Thus, declarative
programming is largely an activity of specification, and languages supporting
declarative programming are sometimes called very-high-level languages or
fifth-generation languages. Languages supporting a logic/declarative style of
programming have support for reasoning about facts and rules; consequently,

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

14 CHAPTER 1. INTRODUCTION

this style of programming is sometimes referred to as rule-based. The basis of the
logic/declarative style of programming is first-order predicate calculus.

Prolog is a language supporting a logic/declarative style of programming.
In contrast to the von Neumann architecture, the Warren Abstract Machine is
a target platform for Prolog compilers. CLIPS is also a language supporting
logic/declarative programming. Likewise, programming in SQL is predominantly
done in a declarative manner. A SQL query describes what data is desired, not
how to find that data (i.e., developing a plan to answer the query). Usually
language support for declarative programming implies an inefficient language
implementation since declarative specification occurs at a very high level. In turn,
interpreters for languages that support declarative programming typically involve
multiple layers of abstraction.

An objective of logic/declarative programming is to support the specification
of both what you want and the knowledge base (i.e., the facts and rules) from
which what you want is to be inferred without regard to how the system will
deduce the result. In other words, the programmer should not be required or
permitted to codify the facts and rules in the program in a form that imparts control
over or manipulates the built-in deduction algorithm for producing the desired
result. No control information or procedural directives should be woven into
the knowledge base so to direct the interpreter’s deduction process. Specification
(or declaration) should be order-independent. Consider the following two logical
propositions:

If it is raining and windy, I carry an umbrella. (R ^ W) Ą U
If it is windy and raining, I carry an umbrella. (W ^ R) Ą U

Since the conjunction logical operator (^) is commutative, these two propositions
are semantically equivalent and, thus, it should not matter which of the two forms
we use in a program. However, since computers are deterministic systems, the
interpreter for a language supporting declarative programming typically evaluates
the terms on the left-hand side of these propositions (i.e., R and W) in a left-to-
right or right-to-left order. Thus, the desired result of the program can—due to side
effect and other factors—depend on that evaluation order, akin to the evaluation
order of the terms in the Python expression x + f() described earlier. Languages
supporting logic/declarative programming as the primary mode of performing
computation often equip the programmer with facilities to impart control over
the search strategy used by the system (e.g., the cut operator in Prolog). These
control facilities violate a defining principle of a declarative style—that is, the
programmer need only be concerned with the logic and can leave the control
(i.e., the inference methods used to produce program output) up to the system.
Unlike Prolog, the Mercury programming language is nearly pure in its support
for declarative programming because it does not support control facilities intended
to circumvent or direct the search strategy built into the system (Somogyi,
Henderson, and Conway 1996). Moreover, the form of the specification of the facts
and rules in a logic/declarative program should have no bearing on the output
of the program. Unfortunately, it often does. Mercury is the closest to a language

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.4. STYLES OF PROGRAMMING 15

Style of Programming Purity Indicates (Near-)Pure
Language(s)

Functional
programming

No provision for side effect Haskell

Logic/declarative
programming

No provision for control Mercury

Object-oriented
programming

No provision for performing
computation without
message passing; all program
entities are objects

Smalltalk, Ruby,
and CLOS-based
languages

Table 1.3 Purity in Programming Languages

supporting a purely logic/declarative style of programming. Table 1.3 summarizes
purity in programming styles. Chapter 14 discusses the logic/declarative style of
programming.

1.4.5 Bottom-up Programming

A compelling style of programming is to use a programming language not to
develop a solution to a problem, but rather to build a language specifically
tailored to solving a family of problems for which the problem at hand
is an instance. The programmer subsequently uses this language to write a
program to solve the problem of interest. This process is called bottom-up
programming and the resulting language is typically either an embedded or a
domain-specific language. Bottom-up programming is not on the same conceptual
level as the other styles of programming discussed in this chapter—it is on
more of a meta-level. Similarly, Lisp is not just a programming language
or a language supporting multiple styles of programming. From its origin,
Lisp was designed as a language to be extended (Graham 1993, p. vi), or
“a programmable programming language” (Foderaro 1991, p. 27), on which
the programmer can build layers of languages supporting multiple styles of
programming. For instance, the abstractions in Lisp can be used to extend
the language with support for object-oriented programming (Graham 1993,
p. ix). This style of programming or metaprogramming, called bottom-up
programming, involves using a programming language not as a tool to write
a target program, but to define a new targeted (or domain-specific) language
and then develop the target program in that language (Graham 1993, p. vi). In
other words, bottom-up programming involves “changing the language to suit
the problem” (Graham 1993, p. 3). “Not only can you program in Lisp (that makes
it a programming language) but you can program the language itself” (Foderaro
1991, p. 27). It has been said that “[i]f you give someone Fortran, he has Fortran. If
you give someone Lisp, he has any language he pleases” (Friedman and Felleisen
1996b, p. 207).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

16 CHAPTER 1. INTRODUCTION

Style of Programming Practical/Conceptual/Theoretical Defining/Pioneering
Foundation Language

Imperative
programming

von Neumann architecture Fortran

Functional
programming

λ-calculus; Lisp machine Lisp

Logic/declarative
programming

First-order Predicate Calculus;
Warren Abstract Machine

Prolog

Object-oriented
programming

Lisp, biological cells, individual
computers on a network

Smalltalk

Table 1.4 Practical/Conceptual/Theoretical Basis for Common Styles of
Programming

syntax: form of language
semantics: meaning of language
first-class entity
side effect
referential transparency

Table 1.5 Key Terms Discussed in Section 1.4

Other programming languages are also intended to be used for bottom-
up programming (e.g., Arc9). While we do return to the idea of bottom-up
programming in Section 5.12 in Chapter 5, and in Chapter 15, the details of bottom-
up programming are beyond the scope of this text. For now it suffices to say that
bottom-up design can be thought of as building a library of functions followed
by writing a concise program that calls those functions. “However, Lisp gives
you much broader powers in this department, and augmenting the language
plays a proportionately larger role in Lisp style—so much so that [as mentioned
previously] Lisp is not just a different language, but a whole different way of
programming” (Graham 1993, p. 4).

A host of other styles of programming are supported by a variety of
other languages: concatenative programming (e.g., Factor, Joy) and dataflow
programming (e.g., LabView). Table 1.4 summarizes the origins of the styles of
programming introduced here. Table 1.5 presents the terms introduced in this
section that are fundamental/universal to the study of programming languages.

1.4.6 Synthesis: Beyond Paradigms

Most languages have support for imperative (e.g., assignment, statement blocks),
object-oriented (e.g., objects, classes), and functional (e.g., λ/anonymous [and

9. http://arclanguage.org

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

http://arclanguage.org

1.4. STYLES OF PROGRAMMING 17

first-class] functions) programming. Some languages even have, to a lesser extent,
support for declarative programming (e.g., pattern-directed invocation).

What we refer to here as styles of programming was once—and in many
cases still is—referred to as paradigms of languages.10 Imperative, functional,
logic/declarative, and object-oriented have been, traditionally, the four classical
paradigms of languages. However, historically, other paradigms have emerged for
niche application domains,11 including languages for business applications (e.g.,
COBOL), hardware description languages (e.g., Verilog, VHDL), and scripting languages
(e.g., awk, Rexx, Tcl, Perl). Traditional scripting languages are typically interpreted
languages supporting an imperative style of programming with an easy-to-
use command-and-control–oriented syntax and ideal for processing strings and
generating reports. The advent of the web ignited the evolution of languages used
for traditional scripting-type tasks into languages supporting multiple styles of
programming (e.g., JavaScript, Python, Ruby, PHP, and Tcl/Tk). As the web and
its use continued to evolve, the programming tasks common to web programming
drove these languages to continue to grow and incorporate additional features and
constructs supporting more expressive and advanced forms of functional, object-
oriented, and concurrent programming. (Use of these languages with associated
development patterns [e.g., Model-View-Controller] eventually evolved into web
frameworks [e.g., Express, Django Rails, Lavavel].)

The styles of programming just discussed are not mutually exclusive, and
language support for multiple styles is not limited to those languages used solely
for web applications. Indeed, one can write a program with a functional motif
while sparingly using imperative constructs (e.g., assignment) for purposes of
pragmatics. Scheme and ML primarily support a functional style of programming,
but have some imperative features (e.g., assignment statements and statement
blocks). Alternatively, one can write a primarily imperative program using some
functional constructs (e.g., λ/anonymous functions). Dylan, which was influenced
by Scheme and Common Lisp, is a language that adds support for object-oriented
programming to its functional programming roots. Similarly, the pattern-directed
invocation built into languages such as ML and Haskell is declarative in nature and
resembles the rule-based programming, at least syntactically, in Prolog. Curry is a
programming language derived from Haskell and, therefore, supports functional
programming; however, it also includes support for logic programming. In
contrast, POP-11 primarily facilitates a declarative style of programming, but

10. A paradigm is a worldview—a model. A model is a simplified view of some entity in the real world
(e.g., a model airplane) that is simpler to interact with. A programming language paradigm refers to a
style of performing computation from which programming in a language adhering to the tenets of that
style proceeds. A language paradigm can be thought of as a family of natural languages, such as the
Romance languages or the Germanic languages.
11. In the past, even the classical functional and logic/declarative paradigms, and specifically the

languages Lisp and Prolog, respectively, were considered paradigms primarily for artificial intelligence
applications even though the emacs text editor for UNIX and Autocad are two non-AI applications that
are more than 30 years old and were developed in Lisp. Now there are Lisp and Prolog applications
in a variety of other domains (e.g., Orbitz). We refer the reader to Graham (1993, p. 1) for the details of
the origin of the (accidental) association between Lisp and AI. Nevertheless, certain languages are still
ideally suited to solve problems in a particular niche application domain. For instance, C is a language
for systems programming and continues to be the language of choice for building operating systems.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

18 CHAPTER 1. INTRODUCTION

supports first-class functions. Scala is a language with support for functional
programming that runs on the Java virtual machine.

Moreover, some languages support database connectivity to make (declara-
tively written) queries to a database system. For instance, C# supports “Language-
INtegrated Queries” (LINQ), where a programmer can embed SQL-inspired
declarative code into programs that otherwise use a combination of imperative,
functional, object-oriented, and concurrent programming constructs. Despite this
phenomenon in language evolution, both the concept and use of the term paradigm
as well as the classical boundaries were still rigorously retained. These languages
are referred to as either web programming languages (i.e., a new paradigm was
invented) or multi-paradigm languages—an explicit indication of the support for
multiple paradigms needed to maintain the classical paradigms.

Almost no languages support only one style of programming. Even Fortran
and BASIC, which were conceived as imperative programming languages, now
incorporate object-oriented features. Moreover, Smalltalk, which supports a pure
form of object-oriented programming, has support for closures from functional
programming—though, of course, they are accessed and manipulated through
object orientation and message passing. Similarly, Mercury, which is considered
nearly a pure logic/declarative language, also supports functional programming.
For example, while based on Prolog, Mercury marries Prolog with the Haskell
type system (Somogyi, Henderson, and Conway 1996). Conversely, almost all
languages support some form of concurrent programming—an indication of the
influence of multicore processors on language evolution (Section 1.5). Moreover,
many languages now support some form of λ/anonymous functions. Languages
supporting more than one style of programming are now the norm; languages
supporting only one style of programming are now the exception.12

Perhaps this is partial acknowledgment from the industry that concepts
from functional (e.g., first-class functions) and object-oriented programming
(e.g., reflection) are finding their way from research languages into mainstream
languages (see Figure 1.4 and Section 1.5 later in this chapter). It also calls the
necessity of the concept of language paradigm into question. If all languages are
multi-paradigm languages, then the concept of language paradigm is antiquated.
Thus, the boundaries of the classical (and contemporary) paradigms are by
now thoroughly blurred, rendering both the boundaries and the paradigms
themselves irrelevant: “Programming language ‘paradigms’ are a moribund and
tedious legacy of a bygone age. Modern language designers pay them no respect,
so why do our courses slavishly adhere to them?” (Krishnamurthi 2008). The
terms originally identifying language paradigms (e.g., imperative, object-oriented,
functional, and declarative) are more styles of programming13,14 than descriptors
for languages or patterns for languages to follow. Thus, instead of talking about

12. The miniKanren family of languages primarily supports logic programming.
13. John Backus (1978) used the phrase “functional style” in the title of his 1977 Turing Award paper.
14. When we use the phrase “styles of programming” we are not referring to the program formatting

guidelines that are often referred to as “program style” (e.g., consistent use of three spaces for
indentation or placing the function return type on a separate line) (Kernighan and Plauger 1978), but
rather the style of effecting and describing computation.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.4. STYLES OF PROGRAMMING 19

a “functional language” or an “object-oriented language,” we discuss “functional
programming” and “object-oriented programming.”

A style of programming captures the concepts and constructs through which
a language provides support for effecting and describing computation (e.g.,
by assignment and side effect vis-á-vis by functions and return values) and is
not a property of a language. The essence of the differences between styles
of programming is captured by how computation is fundamentally effected and
described in each style.15

1.4.7 Language Evaluation Criteria

As a result of the support for multiple styles of programming in a single language,
now, as opposed to 30 years ago, a comparative analysis of languages cannot be
fostered using the styles (i.e., “paradigms”) themselves. For instance, since Python
and Go support multiple overlapping styles of programming, a comparison of
them is not as simple as stating, “Python is an object-oriented language and Go
is an imperative language.” Despite their support for a variety of programming
styles, all computer languages involve a core set of universal concepts (Figure 1.2),
so concepts of languages provide the basis for undertaking comparative analysis.
Programming languages differ in terms of the implementation options each
employs for these concepts. For instance, Python is a dynamically typed language
and Go is a statically typed language. The construction of an interpreter for
a computer language operationalizes (or instantiates) the design options or
semantics for the pertinent concepts. (Operational semantics supplies the meaning
of a computer program through its implementation.) One objective of this text is to
provide the framework in which to study, compare, and select from the available
programming languages.

There are other criteria—sometimes called nonfunctional requirements—by
which to evaluate languages. Traditionally, these criteria include readability,
writability, reliability (i.e., safety), and cost. For instance, all of the parentheses
in Lisp affect the readability and writability of Lisp programs.16 Others might
argue that the verbose nature of COBOL makes it a readable language (e.g.,
ADD 1 TO X GIVING Y), but not a writable language. How are readability and
writability related? In the case of COBOL, they are inversely proportional to
each other. Some criteria are subject to interpretation. For instance, cost (i.e.,
efficiency) can refer to the cost of execution or the cost of development. Other
language evaluation criteria include portability, usability, security, maintainability,
modifiability, and manageability.

Languages can be also be compared on the basis of their implementations.
Historically, languages that primarily supported imperative programming

15. For instance, the object-relational impedance mismatch between relational database systems (e.g.,
PostgreSQL or MySQL) and languages supporting object-oriented programming—which refers to the
challenge in mapping relational schemas and database tables (which are set-, bag-, or list-oriented) in
a relational database system to class definitions and objects—is more a reflection of differing levels
of granularity in the various data modeling support structures than one fundamental to describing
computation.
16. Some have stated that Lisp stands for Lisp Is Superfluous Parentheses.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

20 CHAPTER 1. INTRODUCTION

Prolog

SQL

Mercury*
Common Lisp

Scheme
Smalltalk*Fortran

BASIC

logic/declarative

dataflow

Factor

Haskell* Erlang

Rust
Julia

Go

Clojure TypeScript

Python PerlEiffel C++

ML

INTERPRETERS
operationalize

Elixir LuaMATLAB

functional

object−oriented

imperative

concurrent

scriptingweb

scientific

concatenative

Kotlin

STYLES
OF

PROGRAMMING

gnissap retemarapxatnys

mathematical

Dylan*

Java
JavaScript

Scala

Ruby

UNIVERSAL CONCEPTS
bindings

sepytscitnames lortnocepocs
#CtfiwSR

C

Figure 1.2 Within the context of their support for a variety of programming styles,
all languages involve a core set of universal concepts that are operationalized
through an interpreter and provide a basis for (comparative) evaluation. Asterisks
indicate (near-)purity with respect to programming style.

involved mostly static bindings and, therefore, tended to be compiled. In contrast,
languages that support a functional or logic/declarative style of programming
involve mostly dynamic bindings and tend to be interpreted. (Chapter 4 discusses
strategies for language implementation.)

1.4.8 Thought Process for Problem Solving

While most languages now support multiple styles of programming, use of
the styles themselves involves a shift in one’s problem-solving thought process.
Thinking in one style (e.g., iteration—imperative) and programming in another
style (e.g., functional, where recursive thought is fundamental) is analogous to
translating into your native language every sentence you either hear from or
speak to your conversational partner when participating in a synchronous dialog
in a foreign language—an unsustainable strategy. Just as a one-to-one mapping
between phrases in two natural languages—even those in the same family of
languages (e.g., the Romance languages)—does not exist, it is generally not
possible to translate the solution to a problem conceived with thought endemic to

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.5. FACTORS INFLUENCING LANGUAGE DEVELOPMENT 21

one style (e.g., imperative thought) into another (e.g., functional constructs), and
vice versa.

An advantageous outcome of learning to solve problems using an unfamiliar
style of programming (e.g., functional, declarative) is that it involves a
fundamental shift in one’s thought process toward problem decomposition and
solving. Learning to think and program in alternative styles typically entails
unlearning bad habits acquired unconsciously through the use of other languages
to accommodate the lack of support for that style in those languages. Consider
how a programmer might implement an inherently recursive algorithm such as
mergesort using a language without support for recursion:

Programming languages teach you not to want what they cannot
provide. You have to think in a language to write programs in it,
and it’s hard to want something you can’t describe. When I first
started writing programs—in Basic—I didn’t miss recursion, because
I didn’t know there was such a thing. I thought in Basic. I could
only conceive of iterative algorithms, so why should I miss recursion?
(Graham 1996, p. 2)

Paul Graham (2004b, p. 242) describes the effect languages have on thought
as the Blub Paradox—“[t]he inability to understand the power of programming
languages more powerful than the ones you’re used to thinking in.”17

Programming languages and the use thereof are—perhaps, so far—the only
conduit into the science of computing experienced by students. Because language
influences thought and capacity for thought, an improved understanding of
programming languages and the different styles of programming supported by
that understanding result in a more holistic view of computation.18 Indeed, a
covert goal of this text or side effect of this course of study is to broaden the
reader’s understanding of computation by developing additional avenues through
which to both experience and describe/effect computation in a computer program
(Figure 1.3). An understanding of Latin—even an elementary understanding—not
only helps one learn new languages but also improves one’s use and command
over their native language. Similarly, an understanding of both Lisp and the
linguistic ideas central to it—and, more generally, the concepts of languages—will
help you more easily learn new programming languages and make you a better
programmer in your language of choice. “[L]earning Lisp will teach you more than
just a new language—it will teach you new and more powerful ways of thinking
about programs” (Graham 1996, p. 2).

1.5 Factors Influencing Language Development

Surprisingly enough, programming languages did not historically evolve based on
the abilities of programmers (Weinberg 1988). (One could argue that programmers’

17. Notice use of the phrase “thinking in” instead of “programming in.”
18. The study of formal languages leads to the concept of a Turing machine; thus, language is integral

to the theory of computation.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

22 CHAPTER 1. INTRODUCTION

Programming Languages: Conduits into Computation

Computation

a goal of
this text

Imperative

Object-oriented

Functional

Lo
gic

/D
ec

lar
ati

ve

Figure 1.3 Programming languages and the styles of programming therein are
conduits into computation.

abilities evolved based on the capabilities and limitations of programming
languages.) Historically, computer architecture influenced programming language
design and implementation. Use of the von Neumann architecture inspired the de-
sign of many early programming languages that dovetailed with that model. In the
von Neumann architecture, a sequence of program instructions and program data
are both stored in main memory. Similarly, the languages inspired by this model
view variables (in which to store program data) as abstractions of memory cells.
Further, in these languages variables are manipulated through a sequence of com-
mands, including an assignment statement that changes the value of a variable.

Fortran is one of oldest programming languages still in use whose design
was based on the von Neumann architecture. The primary design goal of Fortran
was speed of execution since Fortran programs were intended for scientific and
engineering applications and had to execute fast. Moreover, the emphasis on
planning programs in advance advocated by software design methodologies (e.g.,
structured programming or top-down design) resulting from the software crisis19 in
the 1960s and 1970s promoted the use of static bindings, which then reinforces
the use of compiled languages. The need to produce programs that executed fast
helped fuel the development of compiled languages such as Fortran, COBOL, and
C. Compiled languages with static bindings and top-down design reinforce each
other.

Often while developing software we build throwaway prototypes solely for
purposes of helping us collect, crystallize, and analyze software requirements,
candidate designs, and implementation approaches. It is widely believed that

19. The software crisis in the 1960s and 1970s refers to the software industry’s inability to scale the
software development process of large systems in the same way as other engineering disciplines.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.5. FACTORS INFLUENCING LANGUAGE DEVELOPMENT 23

writing generates and clarifies thoughts (Graham 1993, p. 2). For instance,
the process of enumerating a list of groceries typically leads to thoughts
of additional items that need to be purchased, which are then listed, and
so on. An alternative to structured programming is literate programming, a
notion introduced by Donald Knuth. Literate programming involves crafting
a program as a representation of one’s thoughts in natural language rather
than based on constraints imposed by computer architecture and, therefore,
programming languages.20 Moreover, in the 1980s the discussion around
the ideas of object-oriented design emerged through the development of
Smalltalk—an interpreted language. Advances in computer hardware, and
particularly Moore’s Law,21 also helped reduce the emphasis on speed of
program execution as the overriding criterion in the design of programming
languages.

While fewer interpreted languages emerged in the 1980s compared to compiled
ones, the confluence of literate programming, object-oriented design, and Moore’s
Law sparked discussion of speed of development as a criterion for designing
programming languages.

The advent of the World Wide Web in the late 1990s and early 2000s
and the new interactive and networked computing platform on which it runs
certainly influenced language design. Language designers had to address the
challenges of developing software that was intended to run on a variety of
hardware platforms and was to be delivered or interacted with over a network.
Moreover, they had to deal with issues of maintaining state—so fundamental to
imperative programming—over a stateless (http) network protocol. For all these
reasons, programming for the web presented a fertile landscape for the practical
exploration of issues of language design. Programming languages tended toward
the inclusion of more dynamic bindings, so more interpreted languages emerged
at this time (e.g., JavaScript).

On the one hand, the need to develop applications with ever-evolving
requirements rapidly has attracted attention to the speed of development as
a more prominent criterion in the design of programming languages and has
continued to nourish the development of languages adopting more dynamic
bindings (e.g., Python). The ability, or lack thereof, to delay bindings until run-
time affects flexibility of program development. The more dynamic bindings
a language supports, the fewer the number of commitments the programmer
must make during program development. Thus, dynamic bindings provide
for convenient debugging, maintenance, and redesign when dealing with
errors or evolving program requirements. For instance, run-time binding of
messages to methods in Python allows programs to be more easily designed
during their initial development and then subsequently extended during their
maintenance.

20. While a novel concept, embraced by tools (e.g., Noweb) and languages (e.g., the proprietary
language Miranda, which is a predecessor of Haskell and similarly supports a pure form of functional
programming), the idea of literate programming never fully caught on.
21. Moore’s Law states that the number of transistors that can be placed inexpensively on an integrated

circuit doubles approximately every two years and describes the evolution of computer hardware.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

24 CHAPTER 1. INTRODUCTION

Graham (2004b) describes this process with a metaphor—namely, an oil
painting where the painter can smudge the oil to correct any initial flaws. Thus,
programming languages that support dynamic bindings are the oil that can reduce
the cost of mistakes. There has been an incremental and ongoing shift toward
support for more dynamic bindings in programming languages to enable the
creation of malleable programs.

On the other hand, static type systems support program evolution by
automatically identifying the parts of a program affected by a change in a data
structure, for example (Wright 2010). Moreover, program safety and security
are new applications of static bindings in languages (e.g., development of
TypeScript as JavaScript with a safe type system). Figure 1.4 depicts the (historical)
development of contemporary languages with dynamic bindings and languages
with static bindings—both supporting multiple styles of programming. Languages

Hack

speed of execution

influenced by
imperative programming

with static bindings supporting
compiled languages

computer

architecture
and

influenced by

time

C#
Rust

C C++

advent of WWW and
speed of development

Go
ScalaPython

Ruby
Lua

JavaScript

Clojure

Dart

with static bindings

languages supporting
multiple styles of

programming

with dynamic bindings

Swift

TypeScript

Smalltalk

Lisp

1980

Java

ML

Haskell

safety
influenced by

strongly typed languages
with static bindings

functional
programming

supporting

pioneering
interpreted (meta−)languages

with dynamic bindings

2000

1960

Kotlin

2020

FortranCOBOL

Ada

Figure 1.4 Evolution of programming languages emphasizing multiple shifts in
language development across a time axis. (Time axis not drawn to scale.)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.6. RECURRING THEMES IN THE STUDY OF LANGUAGES 25

software
crisis

structured
programming

literate
programming

awareness of
speed of

development
as a language
design criterion increased

emphasis
on dynamic

bindings

object-oriented
programming

Moore’s Law
(faster

processors)

advent of the
WWW

need for
portability

mobile/web
apps

awareness
of safety and
security as
a language

design criterion

renewed
emphasis on

static bindings

Figure 1.5 Factors influencing language design.

reconciling the need for both safety and flexibility are also starting to emerge (e.g.,
Hack and Dart). Figure 1.5 summarizes the factors influencing language design
discussed here.

With the computing power available today and the time-to-market demands
placed on software development, speed of execution is now less emphasized as a
design criterion than it once was.22 Software development process methodologies
have commensurately evolved in this direction as well and embrace this trend.
Agile methods such as extreme programming involve repeated and rapid tours
through the software development cycle, implying that speed of development is
highly valued.

1.6 Recurring Themes in the Study of Languages

The following is a set of themes that recur throughout this text:

• A core set of language concepts are universal to all programming languages.
• There are a variety of options for language concepts, and individual

languages differ on the design and implementation options for (some of)
these concepts.

22. In some engineering applications, speed of execution is still the overriding design criterion.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

26 CHAPTER 1. INTRODUCTION

• The concept of binding is fundamental to many other concepts in
programming languages.

• Most issues in the design, implementation, and use of programming
languages involve important practical trade-offs. For instance, there is an
inverse relationship between static (rigid and fast) and dynamic (flexible
and slow) bindings. Reliability, predictability, and safety are the primary
motivations for using a statically typed programming language, while
flexibility and efficiency are motivations for using a dynamically typed
language.

• Side effects are often the underlying culprit of many programming
perils.

• Like natural languages, programming languages have exceptions in how
a language principle applies to entities in the language. Some languages
are consistent (e.g., in Smalltalk everything is an object; Scheme uses prefix
notation for built-in and user-defined functions and operators), while others
are inconsistent (e.g., Java uses pass-by-value for primitives, but seemingly
uses pass-by-reference for objects). There are fewer nuances to learn in
consistent languages.

• There is a relationship between languages and the capacity to express ideas
about computation.

‚ Some idioms cannot be expressed as easily or at all in certain languages
as they can in others.

‚ Languages, through their support for a variety of programming
styles (e.g., functional, declarative), require programmers to undertake
a shift in thought process toward problem solving that develops
additional avenues through which programmers can describe ideas
about computation and, therefore, provides a more holistic view of
computer science.

• Languages are built on top of languages.
• Languages evolve: The specific needs of application domains and

development models influence language design and implementation
options, and vice versa (e.g., speed of execution is less important as a design
goal than it once was).

• Programming is an art (Knuth 1974a), and programs are works of art.
The goal is not just to produce a functional solution to a problem, but
to create a beautiful and reconfigurable program. Consider that architects
seek to design not only structurally sound buildings, but buildings and
environments that are aesthetically pleasing and foster social interactions.23

“Great software, likewise, requires a fanatical devotion to beauty” (Graham
2004b, p. 29).

23. Architect Christopher Alexander and colleagues (1977) explored the relationship between
(architectural) patterns and languages and, as a result, inspired design patterns in software (Gamma
et al. 1995).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.8. LEARNING OUTCOMES 27

• Problem solving and subsequent programming implementation require
pattern recognition and application, respectively.

To close the loop, we return to these themes in Chapter 15 (Conceptual
Exercise 15.3).

1.7 What You Will Learn

The following is a succinct summary of some of the topics about which readers can
expect to learn:

• fundamental and universal concepts of programming languages (e.g.,
scope and parameter passing) and the options available for them
(e.g., lexical scoping, pass-by-name/lazy evaluation), especially from an
implementation-oriented perspective

• language definition and description methods (e.g., grammars)
• how to design and implement language interpreters, and implementation

strategies (e.g., inductive data types, data abstraction and representation)
• different styles of programming (e.g., functional, declarative, concurrent

programming) and how to program using languages supporting those styles
(e.g., Python, Scheme, ML, Haskell, and Prolog)

• types and type systems (through Python, ML, and Haskell)
• other concepts of programming languages (e.g., type inference, higher-order

functions, currying)
• control abstraction, including first-class continuations

One approach to learning language concepts is to implement the studied concepts
through the construction of a progressive series of interpreters, and to assess
the differences in the resulting languages. One module of this text uses this
approach. Specifically, in Chapters 10–12, we implement a programming language,
named Camille, supporting functional and imperative programming through the
construction of interpreters in Python.

We study and use type systems and other concepts of programming languages
(e.g., type inference or currying) through the type-safe languages ML and Haskell
in Chapter 7. We discuss a logic/declarative style of programming through use of
Prolog in Chapter 14.

1.8 Learning Outcomes

Satisfying the text objectives outlined in Section 1.1 will lead to the following
learning outcomes:

• an understanding of fundamental and universal language concepts, and
design/implementation options for them

• an ability to deconstruct a language into its essential concepts and determine
the implementation options for these concepts

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

28 CHAPTER 1. INTRODUCTION

• an ability to focus on the big picture (i.e., core concepts/features and options)
and not the minutia (e.g., syntax)

• an ability to (more rapidly) understand (new or unfamiliar) programming
languages

• an improved background and richer context for discerning appropriate
languages for particular programming problems or application domains

• an understanding of and experience with a variety of programming styles or,
in other words, an increased capacity to describe computational ideas

• a larger and richer arsenal of programming techniques to bring to bear
upon problem-solving and programming tasks, which will make you a better
programmer, in any language

• an increased ability to design and implement new languages
• an improved understanding of the (historical) context in which languages

exist and evolve
• a more holistic view of computer science

The study of language concepts involves the development of a methodology
and vocabulary for the subsequent comparative study of particular languages and
results in both an improved aptitude for choosing the most appropriate language
for the task at hand and a larger toolkit of programming techniques for building
powerful and programming abstractions.

Conceptual Exercises for Chapter 1

Exercise 1.1 Given the definition of programming language presented in this
chapter, is HTML a programming language? How about LATEX? Explain.

Exercise 1.2 Given the definition of a programming language presented in this
chapter, is Prolog, which primarily supports a declarative style of programming,
a programming language? How about Mercury, which supports a pure form of
logic/declarative programming? Explain.

Exercise 1.3 There are many times in the study of programming languages. For
example, variables are bound to types in C at compile time, which means that they
remain fixed to their type for the lifetime of the program. In contrast, variables
are bound to values at run-time (which means that a variable’s value is not bound
until run-time and can change at any time during run-time). In total, there are six
(classic) times in the study of programming languages, of which compile time and
run-time are two. Give an alternative time in the study of programming languages,
and an example of something in C which is bound at that time.

Exercise 1.4 Are objects first-class in Java? C++?

Exercise 1.5 Explain how first-class functions can be simulated in C or C++. Write a
C or C++ program to demonstrate.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.8. LEARNING OUTCOMES 29

Exercise 1.6 For each of the following entities, give all languages from the set
{C++, ML, Prolog, Scheme, Smalltalk} in which the entity is considered first-class:

(a) Function
(b) Continuation
(c) Object
(d) Class

Exercise 1.7 Give a code example of a side effect in C.

Exercise 1.8 Are all functions without side effect referentially transparent? If not, give
a function without a side effect that is not referentially transparent.

Exercise 1.9 Are all referentially transparent functions without side effect? If not, give
a function that is referentially transparent, but has a side effect.

Exercise 1.10 Consider the following Java method:

1 i n t f() {
2 i n t a = 0;
3 a = a + 1;
4 return 10;
5 }

This function cannot modify its parameters because it has none. Moreover, it does
not modify its external environment because it does not access any global data or
perform any I/O. Therefore, the function does not have a side effect. However,
the assignment statement on line 3 does have a side effect. How can this be? The
function does not have a side effect, yet it contains a statement with a side effect—
which seems like a contradiction. Does f have a side effect or not, and why?

Exercise 1.11 Identify two language evaluation criteria other than those discussed
in this chapter.

Exercise 1.12 List two language evaluation criteria that conflict with each other.
Provide two conflicts not discussed in this chapter. Give a specific example of each
to illustrate the conflict.

Exercise 1.13 Fill in the blanks in the expressions in the following table with terms
from the set:

{Dylan, garbage collection, Haskell,
lazy evaluation, Prolog, Smalltalk, static typing}

Go = C `
Curry = ` Prolog

= Lisp ` Smalltalk
Objective-C = C `
TypeScript = JavaScript `
Mercury = ´ impurities
Haskell = ML `

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

30 CHAPTER 1. INTRODUCTION

Exercise 1.14 What is aspect-oriented programming?

Exercise 1.15 Explore the Linda programming language. What styles of program-
ming does it support? For which applications is it intended? What is Linda-calculus
and how does it differ conceptually from λ-calculus?

Exercise 1.16 Identify a programming language with which you are unfamiliar—
perhaps even a language mentioned in this chapter. Try to describe the language
through its most defining characteristics.

Exercise 1.17 Read M. Swaine’s 2009 article “It’s Time to Get Good at Functional
Programming” in Dr. Dobb’s Journal and write a 250-word commentary on it.

Exercise 1.18 Read N. Savage’s 2018 article “Using Functions for Easier Program-
ming” in Communications of the ACM, available at https://doi.acm.org/10.1145
/3193776, and write a 100-word commentary on it.

Exercise 1.19 Write a 2000-word essay addressing the following questions:

• What interests you in programming languages?
• Which concepts or ideas presented in this chapter do you find compelling?

With what do you agree or disagree? Why?
• What are your goals for this course of study?
• What questions do you have?

1.9 Thematic Takeaways

• This course of study is about concepts of programming languages.
• There is a universal lexicon for discussing the concepts of languages and for,

more generally, engaging in this course of study, including the terms binding,
side effect, and first-class entity.

• Programming languages differ in their design and implementation options
for supporting a variety of concepts from a host of programming styles,
including imperative, functional, object-oriented, and logic/declarative
programming.

• The support for multiple styles of programming in a single language
provides programmers with a richer palette in that language for expressing
ideas about computation.

• Programming languages and the various styles of programming used therein
are conduits into computation (Figure 1.3).

• Within the context of their support for a variety of programming styles, all
languages involve a core set of universal concepts that are operationalized
through an interpreter and provide a basis for (comparative) evaluation
(Figure 1.2).

• The diversity of design and implementation options across programming
languages provides fertile ground for comparative language analysis.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

1.10. CHAPTER SUMMARY 31

• A variety of factors influence the design and development of programming
languages, including (historically) computer architecture, abilities of
programmers, and development methodologies.

• The evolution of programming languages bifurcated into languages
involving primarily static binding and those involving primarily dynamic
bindings (Figure 1.4).

See also the recurrent themes in Section 1.6.

1.10 Chapter Summary

This text and course of study are about concepts of programming languages.
There is a universal lexicon for discussing the concepts of languages and
for, more generally, engaging in this course of study, including the terms
binding, side effect, and first-class entity. Programming languages differ in their
design and implementation options for supporting a variety of concepts
from a host of programming styles, including imperative, functional, object-
oriented, and logic/declarative programming. The imperative style of programming
is a natural consequence of the von Neumann architecture: Instructions are
imperative statements that affect, through an assignment operator, the values of
variables, which are themselves abstractions of memory locations. Historically,
programming languages were designed based on the computer architecture
on which the programs written using them were intended to execute. The
functional style of programming is rooted in λ-calculus—a mathematical theory
of functions. The logic/declarative style of programming is grounded in first-order
predicate calculus—a formal system of symbolic logic.

Thirty years ago, programming languages were clearly classified in these
discrete categories or language paradigms, but that is no longer the case. Now
most programming languages support a variety of styles of programming,
including imperative, functional, object-oriented, and declarative programming
(e.g., Python and Go). This diversity in programming styles supported in
individual languages provides programmers with a richer palette in a single
language for expressing ideas about computation—programming languages and
the styles of programming used in these languages are conduits into computation.
A goal of this text is to expose reader to these alternative styles of programming
(Figure 1.3).

Within the context of their support for a variety of programming styles, all
languages involve a core set of universal concepts (Figure 1.2). Programming
languages differ in their design and implementation options for these core
concepts as well as in the variety of concepts from the host of programming
styles they support. This diversity of options in supporting concepts provides
fertile ground for fostering a more meaningful comparative analysis of languages,
while rendering the prevalent (and superficial) mode of language comparison
of the past—putting languages in paradigms and comparing the paradigms—
both irrelevant and nearly impossible. The evolution of programming languages

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

32 CHAPTER 1. INTRODUCTION

bifurcated into languages involving primarily static binding and those involving
primarily dynamic bindings (Figure 1.4).

Since language concepts are the building blocks from which all languages are
constructed/organized, an understanding of the concepts implies that one can
focus on the core language principles (e.g., parameter passing) and the particular
options (e.g., pass-by-reference) used for those principles in (new or unfamiliar)
languages rather than fixating on the details (e.g., syntax), which results in an
improved dexterity in learning, assimilating, and using programming languages.
Moreover, an understanding and experience with a variety of programming styles
and exotic ways of performing computation establishes an increased capacity for
describing computation in a program, a richer toolbox of techniques from which
to solve problems, and a more well-rounded picture of computing.

1.11 Notes and Further Reading

The term paradigm was coined by historian of science Thomas Kuhn. Since
most programming languages no longer fit cleanly into the classical language
paradigms, the concept of language purity (with respect to a particular paradigm)
is pragmatically obsolete. The notion of a first-class entity is attributed to British
computer scientist Christopher Strachey (Abelson and Sussman 1996, p. 76,
footnote 64). John McCarthy, the original designer of Lisp, received the ACM
A. M. Turing Award in 1971 for contributions to artificial intelligence, including
the creation of Lisp.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

	Introduction
	Text Objectives
	Chapter Objectives
	The World of Programming Languages
	Fundamental Questions
	Bindings: Static and Dynamic
	Programming Language Concepts

	Styles of Programming
	Imperative Programming
	Functional Programming
	Object-Oriented Programming
	Logic/Declarative Programming
	Bottom-up Programming
	Synthesis: Beyond Paradigms
	Language Evaluation Criteria
	Thought Process for Problem Solving

	Factors Influencing Language Development
	Recurring Themes in the Study of Languages
	What You Will Learn
	Learning Outcomes
	Thematic Takeaways
	Chapter Summary
	Notes and Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [150 150]
 /PageSize [612.000 792.000]
>> setpagedevice

