
Chapter 2

Formal Languages and
Grammars

[If] one combines the words “to write-while-not-writing”: for then it
means, that he has the power to write and not to write at once; whereas
if one does not combine them, it means that when he is not writing he
has the power to write.

— Aristotle, Sophistical Refutations, Book I, Part 4

Never odd or even

Is it crazy how saying sentences backwards creates backwards
sentences saying how crazy it is

IN this chapter, we discuss the constructs (e.g., regular expressions and
context-free grammars) for defining programming languages and explore

their capabilities and limitations. Regular expressions can denote the lexemes of
programming languages (e.g., an identifier), but not the higher-order syntactic
structures (e.g., expressions and statements) of programming languages. In other
words, regular expressions can denote identifiers and other lexemes while context-
free grammars can capture the rules for a valid expression or statement. Neither
can capture the rule that a variable must be declared before it is used. Context-free
grammars are integral to both the definition and implementation of programming
languages.

2.1 Chapter Objectives

• Introduce syntax and semantics.
• Describe formal methods for defining the syntax of a programming

language.
• Establish an understanding of regular languages, expressions, and grammars.
• Discuss the use of Backus–Naur Form to define grammars.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

34 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

• Establish an understanding of context-free languages and grammars.
• Introduce the role of context in programming languages and the challenges

in modeling context.

2.2 Introduction to Formal Languages

An alphabet is a finite set of symbols denoted by . A string is a combination of
symbols, also called characters, over an alphabet. For instance, strings over the al-
phabet  = {a, b, c} include a, aa, aaa, bb, aba, and abc. The empty string (i.e., a string
of zero characters) is represented as ε. The Kleene closure operator of an alphabet
(i.e., ‹) represents the set of all possible strings that can be constructed through
zero or more concatenations of characters from the alphabet. Thus, the set of all
possible strings from the alphabet  = {a, b, c} is ‹. While  is always finite, ‹ is
always infinite and always contains ε. The strings in ‹ are candidate sentences.

A formal language is a set of strings. Specifically, a formal language L is a subset
of ‹, where each string from ‹ in L is called a sentence. Thus, a formal language
is a set of sentences. For instance, {a, aa, aaa, bb, aba, abc} is a formal language.
There are finite and infinite languages. Finite languages have a finite number of
sentences. The language described previously is a finite language (i.e., it has six
sentences), whereas the Scheme programming language is an infinite language.
Most interesting languages are infinite.

Determining whether a string s from ‹ is in L (i.e., whether the candidate
sentence s is a valid sentence) depends on the complexity of L. For instance,
determining if a string s from ‹ is in the language of all three-character strings is
simpler than determining if s is in the language of palindromes (i.e., strings that read
the same both forward and backward; e.g., dad, eye, or noon). Thus, determining
if a string is a sentence is a set-membership problem.

Recall that syntax refers to the structure or form of language and semantics refers
to the meaning of language. Formal notational systems are available to define
the syntax and semantics of formal languages. This chapter is concerned with
establishing an understanding of those formal systems and how they are used to
define the syntax of programming languages. Armed with an understanding of
the theory of formal language definition mechanisms and methods, we can turn
to practice and study how those devices can be used to recognize a valid program
prior to interpretation or compilation in Chapter 3.

There are three progressive types of sentence validity. A sentence is lexically
valid if all the words of the sentence are valid. A sentence is syntactically valid if it
is lexically valid and the ordering of the words is valid. A sentence is semantically
valid if it is lexically and syntactically valid and has a valid meaning.

Consider the sentences in Table 2.1. The first candidate sentence is not lexically
valid because “saintt” is not a word; therefore, the sentence cannot be syntactically
or semantically valid. The second candidate is lexically valid because all of its
words are valid, but it is not syntactically valid because the arrangement of
those words does not conform to the subject–verb–article–object structure of
English sentences; thus, it cannot be semantically valid. The third candidate is

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.3. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 35

Candidate Sentence Lexically Valid Syntactically Valid Semantically Valid
Augustine is a saintt. ˆ ˆ ˆ
Saint Augustine is a.

‘ ˆ ˆ
Saint is a Augustine.

‘ ‘ ˆ
Augustine is a saint.

‘ ‘ ‘

Table 2.1 Progressive Types of Sentence Validity

Candidate Expression Lexically Valid Syntactically Valid Semantically Valid
= intt + 3 y x; ˆ ˆ ˆ
= int + 3 y x;

‘ ˆ ˆ
int 3 = y + x;

‘ ‘ ˆ
int y = x + 3;

‘ ‘ ‘

Table 2.2 Progressive Types of Program Expression Validity

lexically valid because all of its words are valid and syntactically valid because the
arrangement of those words conforms to the subject–verb–article–object structure
of English sentences, but it is not semantically valid because the sentence does
not make sense. The fourth candidate sentence is lexically, syntactically, and
semantically valid. Notice that these types of sentence validity are progressive.
Once a candidate sentence fails any test for validity, it automatically fails a more
stringent test for validity. In other words, if a candidate sentence does not even
have valid words, those words can never be arranged correctly. Similarly, if
the words of a candidate sentence are not arranged correctly, that sentence can
never make semantic sense. For instance, the second sentence in Table 2.1 is not
syntactically valid so it can never be semantically valid.

Recall that validating a string as a sentence is a set-membership problem. We
saw previously that the first step to determining if a string of words, where a
word is a string of non-whitespace characters, is a sentence is to determine if each
individual word is a sentence (in a simpler language). Only after the validity of
every individual word in the entire string is established can we examine whether
the words are arranged in a proper order according to the particular language in
which this particular, entire string is a candidate sentence. Notice that these steps
are similar to the steps an interpreter or compiler must execute to determine the
validity of a program (i.e., to determine if the program has any syntax errors).
Table 2.2 illustrates these steps of determining program expression validity. Next,
we examine those steps through a formal lens.

2.3 Regular Expressions and Regular Languages

2.3.1 Regular Expressions

Since languages can be infinite, we need a concise, yet formal method of describing
languages. A regular expression is a pattern represented as a string that concisely

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

36 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

Regular Expression Denotes Language
Atomic Regular Expressions

 the single character  Lpq “ 
ε empty string Lpεq “ ε
∅ empty set Lp∅q “ tu

Compound Regular Expressions
pr‹q zero or more of r1 Lpprq‹q “ Lprq‹
pr1r2q concatenation of r1 and r2 Lpr1r2q “ Lpr1qLpr2q
pr1 ` r2q either r1 or r2 Lpr1 ` r2q “ Lpr1q Y Lpr2q

Table 2.3 Regular Expressions (Key:  P .)

and formally denotes the strings of a language. A regular expression is itself
a string in a language, albeit a metalanguage—a language used to describe a
language. Thus, regular expressions have their own alphabet and syntax, not to be
confused with the alphabet and syntax of the language that a regular expression is
used to define.

Table 2.3 presents the six primitive constructs from which any regular
expression can be constructed. These constructs are factored into three primitive
regular expressions (i.e., , ε, and ∅) and three compound regular expressions
(constructed with the ‹, concatenation, and + operators). Thus, some characters in
the alphabet of regular expressions are special and called metacharacters [e.g., ε, ∅,
‹, +, (, and)].1 In particular, RE “ tε,∅,‹ ,`, p, qu. We have already encountered
the ‹ (or Kleene closure) operator as applied to a set of symbols (or alphabet). Here,
it is applied to a regular expression r, where r‹ denotes zero or more occurrences
of r. For instance, the regular expression opus‹ defines the language {opu, opus,
opuss, opusss, . . . }. The regular expression (ab)‹ denotes the language {ε, ab, abab,
ababab, . . . }. In both cases, the set of sentences, and therefore the language, are
infinite. In short, a regular expression denotes a set of strings (i.e., the sentences of
the language that the regular expression denotes).

The + operator is used to construct a compound regular expression from
two subexpressions, where the language denoted by the compound expression
contains the strings from the union of the sets denoted by the two subexpressions.
For instance, the regular expression “the + Java + programming + language”
denotes the language {the, Java + programming, language}. Similarly,

opus(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)‹

denotes the language

{opus1, opus2, . . . , opus9, opus10, opus11, . . . , opus98, opus99}

1. Sometimes some of the characters in the set of metacharacters are also in the alphabet of the
language being defined (i.e., RE X  ‰ H). In these cases, there must be a way to disambiguate the
meaning of the overloaded character. For example, a \ is used in UNIX to escape the special meaning of
the metacharacter following it.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.3. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 37

and

(0+1+. . . +8+9)(0+1+. . . +8+9)(0+1+. . . +8+9)–(0+1+. . . +8+9)(0+1+. . . +8+9) –(0+1+. . . +8+9)(0+1+. . . +8+9)(0+1+. . . +8+9)(0+1+. . . +8+9)

which denotes the language of Social Security numbers.
Table 2.4 presents a set of compound regular expressions with the associated

language that each denotes. Parentheses in compound regular expressions are
used for grouping subexpressions. In the absence of parentheses, highest to lowest
precedence proceeds in a top-down manner, as shown in Table 2.3 (e.g., ‹ has the
highest precedence and ` has the lowest precedence).

An enumeration of the elements of a set of sentences defines a formal language
extensionally, while a regular expression defines a formal language intensionally.

A regular expression is a denotational construct for a (certain type of)
formal language. In other words, a regular expression denotes sentences from
the language it represents. For example, the regular expression opus‹ denotes the
language {opu, opus, opuss, opusss, . . . }.

Regular expressions are implemented in a variety of UNIX tools (e.g., grep,
sed, and awk). Most programming languages implement regular expressions

Regular Expression Denotes Regular Language
abc the string abc {abc}
a + b + c any one character in the

set {a, b, c}
{a, b, c}

a + e + i + o + u any one character in the
set {a, e, i, o, u}

{a, e, i, o, u}

ε + a “a” or the empty string {ε, a}
a(b + c) “a” followed by any

character in the set
{b, c}

{ab, ac}

ab + cd any one string in the set
{ab, cd}

{ab, cd}

a(b + c)d “a” followed by any
character in the set
{b, c} followed by
“d”

{abd, acd}

a‹ “a” zero or more times {ε, a, aa, aaa, . . . }
aa‹ “a” one or more times {a, aa, aaa, . . . }
aaaa‹ “a” three or more times {aaa, aaaa, aaaaa, . . . }
aaaaaaaa “a” exactly eight times {aaaaaaaa}
a + aa + aaa + aaaa + aaaaa “a” between one and

five times
{a, aa, aaa, aaaa, aaaaa}

aaa + aaaa + aaaaa + aaaaaa “a” between three and
six times

{aaa, aaaa, aaaaa, aaaaaa}

Table 2.4 Examples of Regular Expression (re “ tε,∅, ‹,`, p, qu.)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

38 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

either natively in the case of scripting languages (e.g., Perl and Tcl) or through
a library or package (e.g., Python, Java, Go).2

2.3.2 Finite-State Automata

Recall that a regular expression intensionally denotes (the sentences of) a regular
language. Now we turn to a computational mechanism that can decide whether
a string is a sentence in a particular language—the set-membership problem
mentioned previously. A finite-state automaton (FSA) is a model of computation
used to recognize whether a string is a sentence in a particular language. Figure 2.1
presents a finite-state automaton3 that recognizes sentences in the language
denoted by the regular expression

(1+2+¨ ¨ ¨ +8+9)(0+1+2+¨ ¨ ¨ +8+9)‹ +
(_+a+b+¨ ¨ ¨ +y+z+A+B+¨ ¨ ¨ +Y+Z)(_+a+b+¨ ¨ ¨ +y+z+A+B+¨ ¨ ¨ +Y+Z+0+1+¨ ¨ ¨ +8+9)‹

which describes positive integers and legal identifiers in the C programming
language.

We can think of an automaton as a simplified computer (Figure 2.1) that, when
given a string (i.e., candidate sentence) as input, outputs either yes or no to indicate
whether the input string is in the particular language that the machine has been

non-zero digit = 1 + 2 + ... + 8 + 9

digit = 0 + 1 + ... + 8 + 9

alphabetic = a + b + ... + y + z + A + B + ... + Y + Z

_ + alphabetic

digit

1

2

3
non-zero digit

_ + alphabetic + digit

Figure 2.1 A finite-state automaton for a legal identifier and positive integer in the
C programming language.

2. The set of metacharacters available to construct regular expressions in most programming
languages and UNIX tools has evolved over the years beyond syntactic sugar (for formal regular
expressions) and can be used to denote non-regular languages. For instance, the grep regular
expression \([a-z]\)\([a-z]\)[a-z]\2\1 matches the language of palindromes of five-
character, lowercase letters—a non-regular language.

3. More precisely, this finite-state automaton is a nondeterministic finite automaton or NFA. However,
the FSA in Figure 2.1 is not a formally a FSA because it has only three transitions, but it should have one
for each individual input character that moves the automaton from one state to another. For instance,
there should be nine transitions between states 1 and 3—one for each non-zero digit.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.3. REGULAR EXPRESSIONS AND REGULAR LANGUAGES 39

constructed to recognize. In particular, if after running the entire string through
the machine one character a time, the automaton is left in an accepting state (i.e.,
one represented by a double circle, such as states 2 and 3 in Figure 2.1), the string
is a sentence. If after running the string through the machine, the machine is left
in a non-accepting state (i.e., one represented by a single circle, such as state 1 in
Figure 2.1), the string is not a sentence. Formally, a FSA decides a language.

2.3.3 Regular Languages

A regular language is a formal language that can be denoted by a regular expression
and recognized by a finite-state automaton. A regular language is the most
restrictive type of formal language. A regular expression is a denotational construct
for a regular language. In other words, a regular expression denotes sentences from
the language it represents. For example, the regular expression opus‹ denotes the
regular language {opu, opus, opuss, opusss, . . . }.

If a language is finite, it can be denoted by a regular expression. This
regular expression is constructed by enumerating each element of the finite set
of sentences in the language with intervening + metacharacters. For example, the
finite language {a, b, c} is denoted by the regular expression a + b + c. Thus, all
finite languages are regular, but the reverse is not true.

In summary, a regular language (which is the most restrictive type of formal
language) is denoted by a regular expression and is recognized by a finite-state
automaton (which is the simplest model of computation).

Conceptual Exercises for Section 2.3

Exercise 2.3.1 Give a regular expression that defines a language whose sentences
are the set of all strings of alphabetic (in any case) and numeric characters that are
permissible as login IDs for a computer account, where the first character must be
a letter and the string must contain at least one character, but no more than eight.

Exercise 2.3.2 Give a regular expression that denotes the language of five-digit zip
codes (e.g., 45469) with an optional four-digit extension (e.g., 45469-0280).

Exercise 2.3.3 Give a regular expression to denote the language of phrases of
exactly three words separated by whitespace, where a word is any string of non-
whitespace characters and whitespace is any string of spaces or tabs. In your
expression, represent a single space character as l and a single tab character as
Ñ. Among the set of sentences that your regular expression denotes are the three
underlined substrings in the following string: A room with a view.

Exercise 2.3.4 Give a regular expression that denotes the language of decimals
representing ASCII characters (i.e., integers between between 0–127, without
leading 0s for any integer except 0 itself). Thus, the strings 0, 2, 25, and 127 are
in the language, but 00, 02, 000, 025, and 255 are not.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

40 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

Exercise 2.3.5 Give a regular expression for the language of zero or more nested,
matched parentheses, where every opening and closing parenthesis has a match
of the other type, with the matching opening parentheses appearing before the
matching closing parentheses in the sentence, but where the parentheses are
never nested more than three levels deep (i.e., no character in the string is ever
within more than three levels of nesting). To avoid confusion between parentheses
in the string and parentheses used for grouping in the regular expression, use
the “l” and “r” characters to denote left (i.e., opening) and right (i.e., closing)
parentheses in the string, respectively.

Exercise 2.3.6 Since all finite languages are regular, we can construct an FSA for
any finite language. Describe how an FSA for a finite language can be constructed.

2.4 Grammars and Backus–Naur Form

Grammars are yet another way to define languages. A formal grammar is used
to define a formal language. The following is a formal grammar defined for the
language denoted by the ‹ regular expression:

S Ñ a S
S Ñ ε

The formal definition of a grammar is G “ pV,, P, Sq, where

• V is a set of non-terminal symbols (e.g., {S} in the grammar shown here).
•  is an alphabet (e.g.,  = {a}).
• P is a finite set of production rules, each of the form  Ñ y, where  and y

are strings over  Y V and  ‰ ε (or, alternatively, P is a finite relation
P : V Ñ pV Y q‹ (e.g., each line in the example grammar is a production
rule).

• S is the start symbol and S P V (e.g., S).

V is called the non-terminal alphabet, while  is the terminal alphabet, and V X “
∅. In other words, strings of symbols from  are called terminals. Formally, for
each terminal t, t P ‹ (e.g., “a” in the example grammar is the only terminal). We
can think of terminals as the atomic lexical units of a program, called lexemes. The
example grammar is defined formally as G “ ptSu, tu, tS Ñ S, S Ñ εu, S).

Notice that a grammar is a metalanguage, or a language that describes a
language. Moreover, like regular expressions, grammars have their own syntax—
again, not to be confused with the syntax of the languages they are used to define.
Thus, grammars themselves are defined using a metalanguage—a language for
defining a language, which, in this case, could itself be called a metalanguage—a
language for defining a language defines a language! A metalanguage for defining
grammars is called Backus–Naur Form (BNF). BNF takes its name from the last
names of John Backus, who developed the notation and used it to define the syntax
of ALGOL 58 at IBM, and Peter Naur, who later extended the notation and used it
for ALGOL 60 (Section 2.10). The example grammar G is in BNF.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.4. GRAMMARS AND BACKUS–NAUR FORM 41

By applying the production rules, beginning with the start symbol, a grammar
can be used to generate a sentence from the language it defines. For instance, the
following is a derivation of the sentence aaaa:

S
r1ñ aS

r1ñ aaS
r1ñ aaaS

r1ñ aaaaS
r2ñ aaaa

Note that every application of a production rule involves replacing the non-
terminal on the left-hand side of the rule with the entire right-hand side of the
rule. The semantics of the symbol ñ is “derives” and the symbol indicates a one-
step derivation relation. The rn annotation over each ñ symbol indicates which
production rule is used in the substitution. The ñ‹ symbol indicates a zero-or-
more-step derivation relation. Thus, S ñ‹ aaaa.

A formal grammar is a generative construct for a formal language. In other
words, a grammar generates sentences from the language it defines. Formally, if
G “ pV,, S, Pq, then the language generated by G is LpGq “ t |  P ‹ and
S ñ‹ u. A grammar for the language denoted by the regular expression opus‹
is ptS,Wu, to,p,, su, tS Ñ opW,W Ñ sW,W Ñ εuq, which generates the
language {opu, opus, opuss, . . . }.

2.4.1 Regular Grammars

Linguist Noam Chomsky formalized a set of grammars in the late 1950s—
unintentionally making a seminal contribution to computer science. Chomsky’s
work resulted in the Chomsky hierarchy, which is a progressive classification of
formal grammars used to describe the syntax of languages.

Level 1 of the hierarchy defines a type of formal grammar, called a regular
grammar, which is most appropriate for describing the lexemes of programming
languages (e.g., keywords in C such as int and float). The complete set of
lexemes of a language is referred to as a lexicon (or lexis). A grammar is a regular
grammar if and only if every production rule is in one of the following two forms:

X Ñ zY
X Ñ z

where X P V , Y P V , and z P ‹. A grammar whose production rules conform to
these patterns is called a right-linear grammar. Grammars whose production rules
conform to the following pattern are called left-linear grammars:

X Ñ Yz
X Ñ z

Left-linear grammars also generate regular languages. Notice the one-for-one
replacement of a non-terminal for a non-terminal in V in the rules of a right- or
left-linear grammar. Thus, a regular grammar is also referred to as a linear grammar.
Regular grammars define a class of languages known as regular languages.

A regular grammar is a generative device for a regular language. In other words,
it generates sentences from the regular language it defines. However, a grammar
does not have to be regular to generate a regular language. We leave it as an

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

42 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

Regular expressions denote regular languages.
Regular grammars generate regular languages.
Finite-state automata recognize regular languages.

All three define regular languages.

Table 2.5 Relationship of Regular Expressions, Regular Grammars, and Finite-
State Automata to Regular Languages

exercise to define a non-regular grammar that defines a regular language (i.e., one
that can be denoted by a regular expression; Conceptual Exercise 2.10.7).

In summary, a regular language (which is the most restrictive type of formal
language) is:

• denoted by a regular expression,
• recognized by a finite-state automaton (which is the simplest model of

computation), and
• generated by a regular grammar.

See Table 2.5.
Regular expressions, regular grammars, and finite-state automata are

equivalent in their power to denote, generate, and recognize regular languages.
In other words, there does not exist a regular language that could be denoted with
a regular expression that could not be decided by a FSA or generated by a regular
grammar. Mechanical techniques can be used to convert from one of these three
models of a regular language to any of the other two.

An enumeration of the elements of a set of sentences defines a regular
language extensionally, while a regular expression, finite-state automata, and
regular grammar each define a regular language intensionally.

Some formal languages are not regular. Moreover, grammars, in addition
to being language-generation devices, can be used (like an FSA) as language-
recognition devices. We return to this theme of the dual nature of grammars while
discussing context-free grammars in the next section.

2.5 Context-Free Languages and Grammars

There is a limit on the expressivity of regular expressions and regular grammars.
In other words, some languages cannot be defined by a regular expression
or a regular grammar. As a result, there are also computational limits on the
sentence-recognition capabilities of finite-state automata. Consider the language
L of balanced parentheses, whose sentences are strings of nested parentheses with
the same number of opening parentheses in the first half of the string as closing
parentheses in the second half of the string: L “ tpnqn | n ě 0 and  “ tp, quu.
The strings pq and ppppqqqq are balanced and, therefore, sentences in this language;
conversely, the strings p, pqq, and pppqq are unbalanced and not in the language. In
formal language theory, a language of strings of balanced parentheses is called

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.5. CONTEXT-FREE LANGUAGES AND GRAMMARS 43

a Dyck language. A Dyck language cannot be defined by a regular expression.
Alternatively, consider the language L of binary palindromes—binary numbers that
read the same forward as backward: L “ tr |  P t0,1u‹u, where r means
“a reversed copy of .” The strings 00, 11, 101, 010, 1111, and 001100 are in the
language, but 01, 10, 1000, and 1101 are not. We cannot construct either a regular
expression or a regular grammar to define these languages. In other words, neither
a regular expression nor a regular grammar has the expressive capability to model
these languages.

What capability is absent from regular expressions or regular grammars that
renders them unusable for defining these languages? Consider how we might
implement a computer program to recognize strings of balanced parentheses. We
could use a stack data structure to match each opening parenthesis with a closing
parenthesis. Whenever we encounter an open parenthesis, we push it onto the
stack; whenever we see a closing parenthesis, we pop from the stack. If the stack is
empty when all the characters in the string are consumed, then the parentheses in
the string are balanced and the string is a sentence; otherwise, it is not. The utility
of a stack (formally, a pushdown automata) for this purpose implies that we need
some form of unbounded memory to the match parentheses in the candidate string
(i.e., to keep track of the number of unclosed open parentheses unknown a priori).
Recall that the F in FSA stands for finite.

While regular expressions can denote the lexemes (e.g., identifiers) of
programming languages, they cannot model syntactic structures nested arbitrarily
deep that involve balanced pairs of lexemes (e.g., matched curly braces or
begin/end keyword pairs identifying blocks of code; or parentheses in
mathematical expressions), which are ubiquitous in programming languages. In
other words, a sequence of lexemes in a program must be arranged in a particular
order, and that order cannot be captured by a regular expression or a regular
grammar. Regular expressions are expressive enough to denote the lexemes
of programming languages, but not the higher-order syntactic structures (e.g.,
expressions and statements) of programming languages. Therefore, we must turn
our attention to formal grammars with greater expressive capabilities than regular
grammars if we need to define more sophisticated formal languages, including, in
particular, programming languages.

Level 2 of the Chomsky hierarchy defines a type of formal grammar, called a
context-free grammar, which is most appropriate for defining (and, as we see later,
implementing) programming languages. Like the production rules of a regular
grammar, the productions of a context-free grammar must conform to a particular
pattern, but that pattern is less restrictive than the pattern to which regular
grammars must adhere. The productions of a context-free grammar may have
only one non-terminal on the left-hand side. Formally, a grammar is a context-free
grammar if and only if every production rule is in the following form:

X Ñ γ

where X P V and γ P p Y Vq‹, there is only one non-terminal on the left-hand
side of any rule, and X can be replaced with γ anywhere. Notice that since this

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

44 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

definition is less restrictive than that of a regular grammar, every regular grammar
is also a context-free grammar, but the reverse is not true.

Context-free grammars define a class of formal languages called context-free
languages. The concept of balanced pairs of syntactic entities—the essence of a
Dyck language—is at the heart of context-free languages. This single syntactic
feature (and its variations) distinguishes regular languages from context-free
languages, and the capability of expressing balanced pairs is the essence of a
context-free grammars.

2.6 Language Generation: Sentence Derivations

Consider the following a context-free grammar defined in BNF for simple English
sentences:

(r1) ăsentenceą Ñ ărtceą ănoną ăerbą ăderbą.
(r2) ărtceą Ñ a
(r3) ărtceą Ñ an
(r4) ărtceą Ñ the
(r5) ănoną Ñ apple
(r6) ănoną Ñ rose
(r7) ănoną Ñ umbrella
(r8) ăerbą Ñ is
(r9) ăerbą Ñ appears

(r10) ăderbą Ñ here
(r11) ăderbą Ñ there

As briefly shown here, grammars are used to generate sentences from the
language they define. Beginning with the start symbol and repeatedly applying the
production rules until the string contains no non-terminals results in a derivation—
a sequence of applications of the production rules of a grammar beginning with
the start symbol and ending with a sentence (i.e., a string of all terminals arranged
according to the rules of the grammar). For example, consider deriving the
sentence “the apple is there.” from the preceding grammar. The rn parenthesized
annotation on the right-hand side of each application indicates which production
rule was used in the substitution:

ăsentenceą ñ ărtceąănonąăerbąăderbą . (r1)
ñ ărtceą ănoną ăerbą there. (r11)
ñ ărtceą ănoną is there. (r8)
ñ ărtceą apple is there. (r5)
ñ the apple is there. (r4)

The result (on the right-hand side of the ñ symbol) of each step is a string
containing terminals and non-terminals that is called a sentential form. A sentence is
a sentential form containing only terminals.

Peter Naur extended BNF for ALGOL 60 to make the definition of the
production rules in a grammar more concise. While we discuss the details of

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.6. LANGUAGE GENERATION: SENTENCE DERIVATIONS 45

the extension, called Extended Backus–Naur Form (EBNF), later (in Section 2.10),
we cover one element of the extension, alternation, here since we use it in the
following examples. Alternation allows us to consolidate various production rules
whose left-hand sides match into a single rule whose right-hand side consists of
the right-hand sides of each of the individual rules separated by the | symbol.
Therefore, alternation is syntactic sugar, in that any grammar using it can be
rewritten without it. Syntatic sugar is a term coined by Peter Landin that refers
to special, typically terse syntax in a language that serves only as a convenient
method for expressing syntactic structures that are traditionally represented in the
language through uniform and often long-winded syntax. With alternation, we
can define the preceding grammar, which contains 11 production rules with only
5 rules:

(r1) ăsentenceą Ñ ărtceą ănoną ăerbą ăderbą.
(r2) ărtceą Ñ a | an | the
(r3) ănoną Ñ apple | rose | umbrella
(r4) ăerbą Ñ is | appears
(r5) ăderbą Ñ here | there

To differentiate non-terminals from terminals, especially when using grammars
to describe programming languages, we place non-terminal symbols within the
symbols ă ą by convention.4

Consider the following context-free grammar for arithmetic expressions for a
simple four-function calculator with three available identifiers:

(r1) ăeprą ::= ăeprą ` ăeprą
(r2) ăeprą ::= ăeprą ´ ăeprą
(r3) ăeprą ::= ăeprą ‹ ăeprą
(r4) ăeprą ::= ăeprą { ăeprą
(r5) ăeprą ::= ădą
(r6) ădą ::= x | y | z
(r7) ăeprą ::= (ăeprą)
(r8) ăeprą ::= ănmberą
(r9) ănmberą ::= ănmberą ădgtą

(r10) ănmberą ::= ădgtą
(r11) ădgtą ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A derivation is called leftmost if the leftmost non-terminal is always replaced first
in each step. The following is a leftmost derivation of 132:

ăeprą ñ ănmberą (r8)
ñ ănmberąădgtą (r9)
ñ ănmberąădgtąădgtą (r9)

4. Interestingly, Chomsky and Backus/Naur developed their notion for defining grammars
independently. Thus, the two notions have some minor differences: Chomsky used uppercase letters
for non-terminals, the Ñ symbol in production rules, and ε as the empty string; Backus/Naur used
words in any case enclosed in ăą symbols, ::=, and ăemptyą, respectively.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

46 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

ñ ădgtąădgtąădgtą (r10)
ñ 1 ădgtąădgtą (r11)
ñ 13 ădgtą (r11)
ñ 132 (r11)

A derivation is called rightmost if the rightmost non-terminal is always replaced
first in each step. The following is a rightmost derivation of 132:

ăeprą ñ ănmberą (r8)
ñ ănmberąădgtą (r9)
ñ ănmberą 2 (r11)
ñ ănmberąădgtą 2 (r9)
ñ ănmberą 32 (r11)
ñ ădgtą 32 (r10)
ñ 132 (r11)

Some derivations, such as the next two derivations, are neither leftmost nor
rightmost:

ăeprą ñ ănmberą (r8)
ñ ănmberąădgtą (r9)
ñ ănmberąădgtąădgtą (r9)
ñ ănmberąădgtą 2 (r11)
ñ ănmberą 32 (r11)
ñ ădgtą 32 (r10)
ñ 132 (r11)

ăeprą ñ ănmberą (r8)
ñ ănmberąădgtą (r9)
ñ ănmberąădgtąădgtą (r9)
ñ ănmberą 3 ădgtą (r11)
ñ ădgtą 3 ădgtą (r10)
ñ 13 ădgtą (r11)
ñ 132 (r11)

The following is a rightmost derivation of x ` y ‹ z:

ăeprą ñ ăeprą ` ăeprą (r1)
ñ ăeprą ` ăeprą ‹ ăeprą (r3)
ñ ăeprą ` ăeprą ‹ ădą (r5)
ñ ăeprą ` ăeprą ‹ z (r6)
ñ ăeprą ` ădą ‹ z (r5)
ñ ăeprą ` y ‹ z (r6)
ñ ădą ` y ‹ z (r5)
ñ x ` y ‹ z (r6)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.7. LANGUAGE RECOGNITION: PARSING 47

start symbol

(If start symbol, then
yes, a sentence;
otherwise, no.)

grammar

string parsergenerator

grammar

sentencestart symbol

Figure 2.2 The dual nature of grammars as generative and recognition devices.
(left) A language generator that accepts a grammar and a start symbol and
generates a sentence from the language defined by the grammar. (right) A
language parser that accepts a grammar and a string and determines if the string
is in the language.

2.7 Language Recognition: Parsing

In the prior subsection we used context-free grammars as language generation
devices to construct derivations. We can also implement a computer program to
construct derivations; that is, to randomly choose the rules used to substitute
non-terminals. That sentence-generator program takes a grammar as input and
outputs a random sentence in the language defined by that grammar (see the
left side of Figure 2.2). One of the seminal discoveries in computer science is that
grammars can (like finite-state automata) also be used for language recognition—
the reverse of generation. Thus, we can implement a computer program to accept
a candidate string as input and construct a rightmost derivation in reverse to
determine whether the input string is a sentence in the language defined by the
grammar (see the right side of Figure 2.2). That computer program is called a
parser and the process of constructing the derivation is called parsing—the topic
of Chapter 3. If in constructing the rightmost derivation in reverse we return to
the start symbol when the input string is expired, then the string is a sentence;
otherwise, it is not.

Language generation: start symbol ÝÑ sentence
Language recognition: sentence ÝÑ start symbol

A generator applies the production rules of a grammar forward. A parser applies the
rules backward.5

Consider parsing the string x` y ‹ z. In the following parse, . denotes “top of
the stack”:

1 . x ` y ‹ z (shift)
2 x . ` y ‹ z (reduce r6)
3 ădą . ` y‹ z (reduce r5)
4 ăeprą . ` y ‹ z (shift)
5 ăeprą ` . y ‹ z (shift)
6 ăeprą ` y . ‹ z (reduce r6)

5. Another class of parsers applies production rules in a top-down fashion (Section 3.4).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

48 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

7 ăeprą ` ădą . ‹ z (reduce r5)
8 ăeprą ` ăeprą . ‹ z (shift;

why not reduce r1 here instead?)
9 ăeprą ` ăeprą ‹ . z (shift)

10 ăeprą ` ăeprą ‹ z . (reduce r6)
11 ăeprą ` ăeprą ‹ ădą . (reduce r5)
12 ăeprą ` ăeprą ‹ ăeprą . (reduce r3; emit multiplication)
13 ăeprą ` ăeprą . (reduce r1; emit addition)
14 ăeprą . (start symbol; this is a sentence)

The left-hand side of the . represents a stack and the right-hand side of the . (i.e.,
the top of the stack) represents the remainder of the string to be parsed, called the
handle. At each step, either shift or reduce. To determine which to do, examine
the stack. If the items at the top of the stack match the right-hand side of any
production rule, replace those items with the non-terminal on the left-hand side of
that rule. This is known as reducing. If the items at the top of the stack do not match
the right-hand side of any production rule, shift the next lexeme on the right-hand
side of the . to the stack. If the stack contains only the start symbol when the input
string is entirely consumed (i.e., shifted), then the string is a sentence; otherwise,
it is not.

This process is called shift-reduce or bottom-up parsing because it starts with
the string or, in other words, the terminals, and works back through the non-
terminals to the start symbol. A bottom-up parse of an input string constructs a
rightmost derivation of the string in reverse (i.e., bottom-up). For instance, notice
that reading the lines of the rightmost derivation in Section 2.6 in reverse (i.e., from
the bottom line up to the top line) corresponds to the shift-reduce parsing method
discussed here. In particular, the production rules in the preceding shift-reduce
parse of the string x ` y ‹ z are applied in reverse order as those in the rightmost
derivation of the same string in Section 2.6. Later, in Chapter 3, we contrast this
method of parsing with top-down or recursive-descent parsing. The preceding parse
proves that x ` y ‹ z is a sentence.

2.8 Syntactic Ambiguity

The following parse, although different from that in Section 2.7, proves precisely
the same result—that the string is a sentence.

1 . x ` y ‹ z (shift)
2 x . ` y ‹ z (reduce r6)
3 ădą . ` y ‹ z (reduce r5)
4 ăeprą . ` y ‹ z (shift)
5 ăeprą ` . y ‹ z (shift)
6 ăeprą ` y . ‹ z (reduce r6)
7 ăeprą ` ădą . ‹ z (reduce r5)
8 ăeprą ` ăeprą . ‹ z (reduce r1; emit addition;

why not shift here instead?)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.8. SYNTACTIC AMBIGUITY 49

A formal grammar defines only the syntax of a formal language.
A BNF grammar defines the syntax of a programming language,
and some of its semantics as well.

Table 2.6 Formal Grammars Vis-à-Vis BNF Grammars

9 ăeprą . ‹ z (shift)
10 ăeprą ‹ . z (shift)
11 ăeprą ‹ z . (reduce r6)
12 ăeprą ‹ ădą . (reduce r5)
13 ăeprą ‹ ăeprą . (reduce r3; emit multiplication)
14 ăeprą . (start symbol; this is a sentence)

Which of these two parses is preferred? How can we evaluate which is preferred?
On what criteria should we evaluate them? The short answer to these questions
is: It does not matter. The objective of language recognition and parsing is to
determine if the input string is a sentence (i.e., does its structure conform to the
grammar). Both of these parses meet that objective; thus, with respect to syntax,
they both equally meet the objective. Here, we are only concerned with the
syntactic validity of the string, not whether it makes sense (i.e., semantic validity).
Parsing deals with syntax rather than semantics.

However, parsers often address issues of semantics with techniques originally
intended only for addressing syntactic validity. One reason for this is that,
unfortunately, unlike for syntax, we do not have formal models of semantics that
are easily implemented in a computer system. Another reason is that addressing
semantics while parsing can obviate the need to make multiple passes through
the input string. While formal systems help us reason about concepts such as
syntax and semantics, programming language systems implemented based on
these formalisms must address practical issues such as efficiency. (Certain types
of parsers require the production rules of the grammar of the language of the
sentences they parse to be in a particular form, even though the same language
can be defined using production rules in multiple forms. We discuss this concept
in Chapter 3.) Therefore, although this approach is considered impure from a
formal perspective, sometimes we address syntax and semantics at the same time
(Table 2.6).

2.8.1 Modeling Some Semantics in Syntax

One way to gently introduce semantics into syntax is to think of syntax implying
semantics as a desideratum. In other words, the form of an expression or command
(i.e., its syntax) should provide some clue as to its meaning (i.e., semantics). A
complaint against UNIX systems vis-à-vis systems with graphical user interfaces is
that the form (i.e., syntax) of a UNIX command does not imply the meaning (i.e.,
semantics) of the command (e.g., ls, ps, and grep vis-à-vis date and whoami).
The idea of integrating semantics into syntax may not seem so foreign a concept.
For instance, we are taught in introductory computer programming courses to use

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

50 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

identifier names that imply the meaning of the variable to which they refer (e.g.,
rate and index vis-à-vis x and y).

Here we would like to infuse semantics into parsing in an identifiable way.
Specifically, we would like to evaluate the expression while parsing it. This helps
us avoid making unnecessary passes over the string if it is a sentence. Again, it
is important to realize we are shifting from the realm of syntactic validity into
interpretation. The two should not be confused, as they serve different purposes.
Determining if a string is a sentence is completely independent of evaluating it
for a return value. We often subconsciously impart semantics onto an expression
such as x ` y ‹ z because without any mention of meaning we presume it is a
mathematical expression. However, it is simply a string conforming to a syntax
(i.e., form) and can have any interpretation or meaning we impart to it. Indeed,
the meaning of the expression x ` y ‹ z could be a list of five elements.

Thus, in evaluating an expression while parsing it, we are imparting
knowledge of how to interpret the expression (i.e., semantics). Here, we interpret
these sentences as standard mathematical expressions. However, to evaluate these
mathematical expressions, we must adopt even more semantics beyond the simple
interpretation of them as mathematical expressions. If they are mathematical
expressions, to evaluate them we must determine which operators have precedence
over each other [i.e., is x ` y‹ z interpreted as (x ` y) ‹ z or x + (y ‹ z)] as well
as the order in which each operator associates [i.e., is 6 ´ 3 ´ 2 interpreted as
(6 ´ 3) ´ 2 or 6 ´ (3 ´ 2)?]. Precedence deals with the order of distinct operators
(e.g., ‹ computes before `), while associativity deals with the order of operators
with the same precedence (e.g., ´ associates left-to-right).

Formally, a binary operator ‘ on a set S is associative if p ‘ bq ‘ c “
 ‘ pb ‘ cq @, b, c P S. Intuitively, associativity means that the value of an
expression containing more than one instance of a single binary associative
operator is independent of evaluation order as long as the sequence of the
operands is unchanged. In other words, parentheses are unnecessary and
rearranging the parentheses in such an expression does not change its value.

Notice that both parses of the expression x + y ‹ z are the same until line 8,
where a decision must be made to shift or reduce. The first parse shifts while
the second reduces. Both lead to successful parses. However, if we evaluate the
expression while parsing it, each parse leads to different results. One way to
evaluate a mathematical expression while parsing it is to emit the mathematical
operation when reducing. For instance, in step 12 of the first parse, when we
reduce ăepr ą ‹ ăepr ą to ăepr ą, we can compute y ‹ z. Similarly, in
step 13 of that same parse, when we reduce ăeprą ` ăeprą to ăeprą, we
can compute x ` ăthe rest compted n step 12ą. This interpretation [i.e., x
+ (y ‹ z)] is desired because in mathematics multiplication has higher precedence
than addition. Now consider the second parse. In step 8 of that parse, when we
(prematurely) reduce ă epr ą ` ă epr ą to ă epr ą, we compute x ` y.
Then in step 13, when we reduce ăeprą ‹ ăeprą to ăeprą, we compute
ăthe rest compted n step 8ą ‹ z. This interpretation [i.e., (x ` y) ‹ z] is
obviously not desired. If we shift at step 8, multiplication has higher precedence

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.8. SYNTACTIC AMBIGUITY 51

than addition (desired). If we reduce at step 8, addition has higher precedence than
multiplication (undesired). Therefore, we prefer the first parse. These two parses
exhibit a shift-reduce conflict. If we shift at step 8, then multiplication has higher
precedence than addition (which is the desired semantics). If we reduce at step 8,
then addition has higher precedence (which is the undesired semantics).

The possibility of a reduce-reduce conflict also exists. Consider the following
grammar:

(r1) ăeprą ::= ătermą
(r2) ăeprą ::= ădą
(r3) ătermą ::= ădą
(r4) ădą ::= x | y | z

and a bottom-up parse of the expression x:

. x (shift)
x . (reduce r4)
ădą . (reduce r2 or r3 here?)

2.8.2 Parse Trees

The underlying source of shift-reduce and reduce-reduce conflicts is an ambiguous
grammar. A grammar is ambiguous if there exists a sentence that can be parsed in
more than one way. A parse of a sentence can be graphically represented using a
parse tree. A parse tree is a tree whose root is the start symbol of the grammar, non-
leaf vertices are non-terminals, and leaves are terminals, where the structure of the
tree represents the conformity of the sentence to the grammar. A parse tree is fully
expanded. Specifically, it has no leaves that are non-terminals and all of its leaves
are terminals that, when collected from left to right, constitute the expression
whose parse it represents. Thus, a grammar is ambiguous if we can construct
more than one parse tree for the same sentence from the language defined by the
grammar. Figure 2.3 gives parse trees for the expression x ` y ‹ z derived from the
four-function calculator grammar in Section 2.6. The left tree represents the first
parse and the right tree represents the second parse. The existence of these trees
proves that the grammar is ambiguous. The last grammar in Section 2.8.1 is also

<expr>

+

<id> *

<id>x

y z

<id>

<expr>

<expr> <expr>

<expr> <expr>

<id><id>

<id>

*

+

z

yx

<expr>

<expr> <expr>

<expr>

Figure 2.3 Two parse trees for the expression x ` y ‹ z.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

52 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

<id>

x

<expr>

<term>

<id>

x

<expr>

Figure 2.4 Parse trees for the expression x.

ambiguous; a proof of ambiguity exists in Figure 2.4, which contains two parse
trees for the expression x.

Ambiguity is a term used to describe a grammar, whereas a shift-reduce
conflict and a reduce-reduce conflict are phrases used to describe a particular
parse. However, each concept is a different side of the same coin. If a grammar is
ambiguous, a bottom-up parse of a sentence in the language the grammar defines
will exhibit either a shift-reduce or reduce-reduce conflict, and vice versa.

Thus, proving a grammar is ambiguous is a straightforward process. All we
need to do is build two parse trees for the same expression. Much more difficult,
by comparison, is proving that a grammar is unambiguous.

It is important to note that a parse tree is not a derivation, or vice versa.
A derivation illustrates how to generate a sentence. A parse tree illustrates the
opposite—how to recognize a sentence. However, both prove a sentence is in
a language (Table 2.7). Moreover, while multiple derivations of a sentence (as
illustrated in Section 2.6) are not a problem, having multiple parse trees for a
sentence is a problem—not from a recognition standpoint, but rather from an
interpretation (i.e., meaning) perspective. Consider Table 2.8, which contains four
sentences from the four-function calculator grammar in Section 2.6. While the

A derivation generates a sentence in a formal language.
A parse tree recognizes a sentence in a formal language.

Both prove a sentence is in a formal language.

Table 2.7 The Dual Use of Grammars: For Generation (Constructing a Derivation)
and Recognition (Constructing a Parse Tree)

Sentence Derivation(s) Parse Tree(s) Semantics
132 multiple one one: 132
1 + 3 + 2 multiple multiple one: 6
1 + 3 * 2 multiple multiple multiple: 7 or 8
6 - 3 - 2 multiple multiple multiple: 1 or 5

Table 2.8 Effect of Ambiguity on Semantics

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.8. SYNTACTIC AMBIGUITY 53

<expr>

<number>

<number>

<number> <digit>

<digit>

<digit>

1

3

2

Figure 2.5 Parse tree for the expression 132.

<expr>

<number><number>

<number>

+

+

2<digit> <digit>

<digit>

1 3

<expr>

<expr> <expr>

<expr> <expr>

+

<number>

<digit> <number><number>

+

<digit> <digit>1

3 2

<expr>

<expr> <expr>

<expr>

Figure 2.6 Parse trees for the expression 1 ` 3 ` 2.

first sentence 132 has multiple derivations, it has only one parse tree (Figure 2.5)
and, therefore, only one meaning. The second expression, 1 ` 3 ` 2, in contrast,
has multiple derivations and multiple parse trees. However, those parse trees
(Figure 2.6) all convey the same meaning (i.e., 6). The third expression, 1 ` 3 ‹ 2,
also has multiple derivations and parse trees (Figure 2.7). However, its parse trees
each convey a different meaning (i.e., 7 or 8). Similarly, the fourth expression,
6 ´ 3 ´ 2, has multiple derivations and parse trees (Figure 2.8), and those parse
trees each have different interpretations (i.e., 1 or 5). The last three rows of Table 2.8
show the grammar to be ambiguous even though the ambiguity manifested in the
expression 1 ` 3 ` 2 is of no consequence to interpretation. The third expression
demonstrates the need for rules establishing precedence among operators, and
the fourth expression illustrates the need for rules establishing how each operator
associates (left-to-right or right-to-left).

Bear in mind, that we are addressing semantics using a formalism intended for
syntax. We are addressing semantics using formalisms and techniques reserved
for syntax primarily because we do not have easily implementable methods

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

54 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

<expr>

+

<number>

<digit> <number><number>

*

<digit>

3 2

<digit>1

<expr>

<expr> <expr>

<expr> <expr>

<number><number>

<number>

*

+

2<digit> <digit>

<digit>

1 3

<expr>

<expr> <expr>

<expr>

Figure 2.7 Parse trees for the expression 1 ` 3 ‹ 2.

<expr>

<number><number>

<number>

−

2<digit> <digit>

<digit>

6 3

−

<expr>

<expr> <expr>

<expr> <expr>

−

<number>

<digit> <number><number>

−

<digit> <digit>6

3 2

<expr>

<expr> <expr>

<expr>

Figure 2.8 Parse trees for the expression 6 ´ 3 ´ 2.

for dealing with context, which is necessary to effectively address semantics, in
computer systems. By definition, context-free grammars are not intended to model
context. However, the semantics we address through syntactic means—namely,
precedence and associativity—are not dependent on context. In other words,
multiplication does not have higher precedence than addition in some contexts
and vice versa in others (though it could, since we are defining the language6).
Similarly, subtraction does not associate left-to-right in some contexts and right-
to-left in others. Therefore, all we need to do is make a decision for each and
implement the decision.

Typically semantic rules such as precedence and associativity are specified in
English (in the absence of formalisms to encode semantics easily and succinctly) in
the programming manual of a particular programming language (e.g., ‹ has higher
precedence than ` and ´ associates left-to-right). Thus, English is one way to
specify semantic rules. However, English itself is ambiguous. Therefore, when the
ambiguity—in the formal language, not English—is not dependent on context, as

6. In the programming language APL, addition has higher precedence than multiplication.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.8. SYNTACTIC AMBIGUITY 55

in the case here with precedence and associativity, we can modify the grammar so
that the ambiguity is removed, making the meaning (or semantics) determinable
from the grammar (syntax). When ambiguity is dependent on context, grammar
disambiguation to force one interpretation is not possible because you actually
want more than one interpretation, though only one per context. For instance,
the English sentence “Time flies like an arrow” can be parsed multiple ways. It
can be parsed to indicate that there are creatures called “time flies,” which really
like arrows (i.e., ădjecteą ănoną ăerbą ărtceą ănoną), or
metaphorically (i.e., ănoną ăerbą ăprepostoną ărtceą ănoną).
English is a language with an ambiguous grammar. How can we determine
intended meaning? We need the surrounding context provided by the sentences
before and after this sentence. Consider parsing the sentence “Mary saw the
man on the mountain with a telescope.”, which also has multiple interpretations
corresponding to the different parses of it. This sentence has syntactic ambiguity,
meaning that the same sentence can be diagrammed (or parsed) in multiple ways
(i.e., it has multiple syntactic structures). “They are moving pictures.” and “The
duke yet lives that Henry shall depose.”7 are other examples of sentences with
multiple interpretations.

English sentences can also exhibit semantic ambiguity, where there is only
one syntactic structure (i.e., parse), but the individual words can be interpreted
differently. An underlying source of these ambiguities is the presence of
polysemes—a word with one spelling and pronunciation, but different meanings
(e.g., book, flies, or rush). Polysemes are the opposite of synonyms—different words
with one meaning (e.g., peaceful and serene). Polysemes that are different parts of
speech (e.g., book, flies, or rush) can cause syntactic ambiguity, whereas polysemes
that are the same part of speech (e.g., mouse) can cause semantic ambiguity. Note
that not all sentences with syntactic ambiguity contain a polyseme (e.g., “They are
moving pictures.”). For summaries of these concepts, see Tables 2.9 and 2.10.

Similarly, in programming languages, the source of a semantic ambiguity is not
always a syntactic ambiguity. For instance, consider the expression (Integer)-a
on line 5 of the following Java program:

1 c l a s s SemanticAmbiguity {
2 public s t a t i c void main(String args[]) {
3 i n t a = 1;
4 i n t Integer = 5;
5 i n t b = (Integer)-a;
6 System.out.println(b); // prints 4, not -1
7 b = (Integer)(-a);
8 System.out.println(b); // prints -1, not 4
9 }

10 }

The expression (Integer)-a (line 5) has only one parse tree given the grammar
of a four-function calculator presented this section (assuming Integer is an
ă dą) and, therefore, is syntactically unambiguous. However, that expression
has multiple interpretations in Java: (1) as a subtraction—the variable Integer

7. Henry VI by William Shakespeare.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

56 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

Concept Syntactic Structure(s) Meaning Example
Syntactic ambiguity multiple multiple They are moving pictures.
Semantic ambiguity one multiple The mouse was right on

my computer.

Table 2.9 Syntactic Ambiguity Vis-à-Vis Semantic Ambiguity

Term Spelling Pronunciation Meaning Example(s)
Polysemes same same different book, flies, or rush

Homonyms
Homophones different same different knight/night
Homographs same different different close or wind

Synonyms different different same peaceful/serene

Table 2.10 Polysemes, Homonyms, and Synonyms

minus the variable a, which is 4, and (2) as a type cast—type casting the value -a
(or -1) to a value of type Integer, which is -1. Table 2.11 contains sentences
from both natural and programming languages with various types of ambiguity,
and demonstrates the interplay between those types. For example, a sentence
without syntactic ambiguity can have semantic ambiguity; and a sentence without
semantic ambiguity can have syntactic ambiguity.

We have two options for dealing with an ambiguous grammar, but both have
disadvantages. First, we can state disambiguation rules in English (i.e., attach
notes to the grammar), which means we do not have to alter (i.e., lengthen)
the grammar, but this comes at the expense of being less formal (by the use of
English). Alternatively, we can disambiguate the grammar by revising it, which
is a more formal approach than the use of English, but this inflates the number
of production rules in the grammar. Disambiguating a grammar is not always
possible. The existence of context-free languages for which no unambiguous
context-free grammar exists has been proven (in 1961 with Parikh’s theorem). These
languages are called inherently ambiguous languages.

Ambiguity
Sentence Lexical Syntactic Semantic

flies
‘ ‘ ‘

Time flies like an arrow.
‘ ‘ ‘

They are moving pictures. ˆ ˆ ‘

*
‘ ‘ ‘

1+3+2 ˆ ‘ ˆ
1+3*2

‘ ‘ ‘

(Integer)-a ˆ ˆ ‘

Table 2.11 Interplay Between and Interdependence of Types of Ambiguity

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.9. GRAMMAR DISAMBIGUATION 57

2.9 Grammar Disambiguation

Here, “having higher precedence” means “occurring lower in the parse
tree” because expressions are evaluated bottom-up. In general, grammar
disambiguation involves introducing additional non-terminals to prevent a
sentence from being parsed multiple ways. To remove the ambiguity caused by
(the lack of) operator precedence, we introduce new steps (i.e., non-terminals) in
the non-terminal cascade so that multiplications are always lower than additions
in the parse tree. Recall that we desire part of the meaning (or semantics) to be
determined from the grammar (or syntax).

2.9.1 Operator Precedence

Consider the following updated grammar, which addresses precedence:

ăeprą ::= ăeprą ` ăeprą
ăeprą ::= ăeprą ´ ăeprą
ăeprą ::= ătermą
ătermą ::= ătermą ‹ ătermą
ătermą ::= ătermą { ătermą
ătermą ::= (ăeprą)
ătermą ::= (ădą)
ătermą ::= ănmberą

With this grammar it is no longer possible to construct two parse trees
for the expression x ` y ‹ z. The expression x ` y ‹ z, by virtue of
being parsed using this revised grammar, will always be interpreted as
x ` (y ‹ z). However, while the example grammar addresses the issue
of precedence, it remains ambiguous because it is still possible to use
it to construct two parse trees for the expression 6 ´ 3 ´ 2 since it does
not address associativity (Figure 2.8). Recall that associativity comes into
play when dealing with operators with the same precedence. Subtraction is
left-associative [e.g., 6 ´ 3 ´ 2 = (6 ´ 3) ´ 2 = 1], while unary minus is right-
associative [e.g., ´ ´ ´6 = ´(´(´6))]. Associativity is mute with certain operators,
including addition [e.g., 1 ` 3 ` 2 = (1 ` 3) ` 2 = 1 ` (3 ` 2) = 6], but significant
with others, including subtraction and unary minus. Theoretically, addition
associates either left or right with the same result. However, when addition over
floating-point numbers is implemented in a computer system, associativity is
significant because left- and right-associativity can lead to different results. Thus,
the grammar is still ambiguous for the sentences 1 ` 3 ` 2 and 6 ´ 3 ´ 2,
although the former does not cause problems because both parses result in the
same interpretation.

2.9.2 Associativity of Operators

Consider the following updated grammar, which addresses precedence and
associativity:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

58 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

ăeprą ::= ăeprą ` ătermą
ăeprą ::= ăeprą ´ ătermą
ăeprą ::= ătermą
ătermą ::= ătermą ‹ ăƒctorą
ătermą ::= ătermą { ăƒctorą
ătermą ::= ăƒctorą

ăƒctorą ::= (ăeprą)
ăƒctorą ::= (ădą)
ăƒctorą ::= ănmberą

In disambiguating the grammar for associativity, we follow the same thematic
process as we used earlier: Obviate multiple parse trees by adding another level of
indirection through the introduction of a new non-terminal. If we want an operator
to be left-associative, then we write the production rule for that operator in a
left-recursive manner because left-recursion leads to left-associativity. Similarly, if
we want an operator to be right-associative, then we write the production rule
for that operator in a right-recursive manner because right-recursion results in
right-associativity. Since subtraction is a left-associative operator, we write the
production rule as ăeprą ::“ ăeprą ´ ătermą (i.e., left-recursive) rather
than ăeprą ::“ ătermą ´ ăeprą (i.e., right-recursive). The same holds
for division. Since addition and multiplication are non-associative operators,
we write the production rules dealing with those operators in a left-recursive
manner for consistency. Therefore, the final non-ambiguous grammar is that
shown previously.

2.9.3 The Classical Dangling else Problem

The dangling else problem is a classical example of grammar
ambiguity in programming languages: In the absence of curly braces
for disambiguation, when we have an if–else statement such as
if ăepr1ą if ăepr2ą ăstmt1ą else ăstmt2ą, the if to which
the else is associated is ambiguous. In other words, without a semantic rule, the
statement can be interpreted in the following two ways:

i f expr1
i f expr2

stmt1
else

stmt2

i f expr1
i f expr2

stmt1
else

stmt2

Indentation is used to indicate to which if the else is intended to be associated. Of
course, in free-form languages, indentation has no bearing on program semantics.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.9. GRAMMAR DISAMBIGUATION 59

x

<stmt>

if <cond> <stmt> <stmt>else

(a < 2)

if <cond> <stmt>

(b > 3)

y

y

<stmt>

if <cond> <stmt>

(a < 2)

if <cond> <stmt>

(b > 3) x

else <stmt>

Figure 2.9 Parse trees for the sentence if (a < 2) if (b > 3) x else y.
(left) Parse tree for an if–pifq–else construction. (right) Parse tree for an
if–pif–elseq construction.

In C, the semantic rule is that an else associates with the closest unmatched if
and, therefore, the first interpretation is used.

Consider the following grammar for generating if–else statements:

ăstmtą ::= if ăcondąăstmtą
ăstmtą ::= if ăcondąăstmtą else ăstmtą

Using this grammar, we can generate the following statement (save for the
comment):

i f (a < 2)
i f (b > 3)

x = 4;
else /* associates with which if above ? */

y = 5;

for which we can construct two parse trees (Figure 2.9) proving that the grammar
is ambiguous. Again, since formal methods for modeling semantics are not easily
implementable, we need to revise the grammar (i.e., syntax) to imply the desired
meaning (i.e., semantics). We can do that by disambiguating this grammar so
that it is capable of generating if sentences that can only be parsed to imply
that any else associates with the nearest unmatched if (i.e., parse trees of the
form shown on the right side of Figure 2.9). We leave it as an exercise to develop
an unambiguous grammar to solve the dangling else problem (Conceptual
Exercise 2.10.25).

Notice that while semantics (e.g., precedence and associativity) can sometimes
be reasonably modeled using context-free grammars, which are devices for
modeling the syntactic structure of language, context-free grammars can always
be used to model the lexical structure (or lexics) of language, since any regular
language can be modeled by a context-free grammar. For instance, embedded into
the first grammar of a four-function calculator presented in this section is the lexics
of the numbers:

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

60 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

ănmberą ::= ănmberą ădgtą
ănmberą ::= ădgtą

ădgtą ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Thus, in the four-function calculator grammar containing these productions,
the token structure (of numbers) and the syntactic structure of the expressions
are inseparable. Alternatively, we could have used the regular expression
(0+1+¨ ¨ ¨ +8+9)(0+1+¨ ¨ ¨ +8+9)‹ to define the lexics and used a simpler rule in the
context-free grammar:

ănmberą ::= 0 | 1 | 2 | 3 | . . . | 231-2 | 231-1

2.10 Extended Backus–Naur Form

Extended Backus–Naur Form (EBNF) includes the following syntactic extensions
to BNF.

• | means “alternation.”
• [] means “ is optional.”
• {}˚ means “zero or more of .”
• {}` means “one or more of .”
• {}˚pcq means “zero or more of  separated by cs.”
• {}`pcq means “one or more of  separated by cs.”

Note that we have already encountered the extension to BNF for alternation
(using |). Consider the following context-free grammar defined in BNF:

ăsymbo-eprą ::= x
ăsymbo-eprą ::= y
ăsymbo-eprą ::= z
ăsymbo-eprą ::= (ăs-stą)

ăs-stą ::= ăs-stą, ăsymbo-eprą
ăs-stą ::= ăsymbo-eprą

which can be used to derive the following sentences: x, (x, y, z), ((x)), and (((x)),
((y), (z))). We can reexpress this grammar in EBNF using alternation as follows:

ăsymbo-eprą ::= x | y | z | (ăs-stą)
ăs-stą ::= ăs-stą, ăsymbo-eprą|ăsymbo-eprą

We can express r2 more concisely using the extension for an optional item:

ăsymbo-eprą ::= x | y | z | (ăs-stą)
ăs-stą ::= răs-stą,s ăsymbo-eprą

As another example, consider the following grammar defined in BNF:

ărgstą ::= ărgą, ărgą
ărgą ::= ărgstą

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.10. EXTENDED BACKUS–NAUR FORM 61

It can be rewritten in EBNF as a single rule:

ărgstą ::= ărgą, ărgą {, ărgą}˚

and can be simplified further as

ărgstą ::= ărgą, ărgą {ărgą}˚p,q

or expressed alternatively as

ărgstą ::= ărgą, {ărgą}`p,q

These extensions are intended for ease of grammar definition. Any grammar
defined in EBNF can be expressed in BNF. Thus, these shortcuts are simply syntactic
sugar. In summary, a context-free language (which is a type of formal language)
is generated by a context-free grammar (which is a type of formal grammar) and
recognized by a pushdown automaton (which is a model of computation).

Conceptual Exercises for Sections 2.4–2.10

Exercise 2.10.1 Define a regular grammar in BNF for the language of Conceptual
Exercise 2.3.1.

Exercise 2.10.2 Define a regular grammar in EBNF for the language of Conceptual
Exercise 2.3.1.

Exercise 2.10.3 Define a regular grammar in BNF for the language of Conceptual
Exercise 2.3.3.

Exercise 2.10.4 Define a regular grammar in EBNF for the language of Conceptual
Exercise 2.3.3.

Exercise 2.10.5 Define a regular grammar in BNF for the language of Conceptual
Exercise 2.3.4.

Exercise 2.10.6 Define a regular grammar in EBNF for the language of Conceptual
Exercise 2.3.4.

Exercise 2.10.7 Define a grammar G, where G is not regular but defines a regular
language (i.e., one that can be denoted by a regular expression).

Exercise 2.10.8 Express the regular expression hw(1+2+. . . +8+9)(0+1+2+. . . +8+9)‹
as a regular grammar.

Exercise 2.10.9 Express the regular expression hw(1+2+. . . +8+9)(0+1+2+. . . +8+9)‹
as a context-free grammar.

Exercise 2.10.10 Notice that the grammar of a four-function calculator presented
in Section 2.6 is capable of generating numbers containing one or more leading

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

62 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

0s (e.g., 001 and 0001931), which four-function calculators are typically unable to
produce. Revise this grammar so that it is unable to generate numbers with leading
zeros, save for 0 itself.

Exercise 2.10.11 Reduce the number of production rules in the grammar of a four-
function calculator presented in Section 2.6. In particular, consolidate rules r1–r4
into two rules by adding a new non-terminal ăopertorą.

Exercise 2.10.12 Describe in English, as precisely as possible, the language defined
by the following grammar:

T Ñ ab | ba
T Ñ abT | baT
T Ñ aTb | bTa
T Ñ aTbT | bTaT

where T is a non-terminal and a and b are terminals.

Exercise 2.10.13 Prove that the grammar in Conceptual Exercise 2.10.12 is
ambiguous.

Exercise 2.10.14 Consider the following grammar in EBNF:

ăeprą ::= ăeprą ` ăeprą|ătermą
ătermą ::= ătermą ‹ ătermą|ăeprą| id

where ăeprą and ătermą are non-terminals and `, ‹, and id are terminals.

(a) Prove that this grammar is ambiguous.
(b) Modify this grammar so that it is unambiguous.
(c) Define an unambiguous version of this grammar containing only two non-

terminals.

Exercise 2.10.15 Prove that the following grammar defined in EBNF is ambiguous:

(r1) ăsymbo-eprą ::= x | y | z | (ăs-stą)
(r2) ăs-stą ::= răs-stą,s ăsymbo-eprą
(r3) ăs-stą ::= răsymbo-eprą,s ăsymbo-eprą

where ă symbo-epr ą and ă s-st ą are non-terminals; x, y, z, (, and) are
terminals; and ăsymbo-eprą is the start symbol.

Exercise 2.10.16 Does removing rule r3 from the grammar in Conceptual
Exercise 2.10.15 eliminate the ambiguity from the grammar? If not, prove that the
grammar with r3 removed is still ambiguous.

Exercise 2.10.17 Define a grammar for a language L consisting of strings that have
n copies of the letter  followed by the same number of copies of the letter b, where
n ą 0. Formally, L “ tnbn | n ą 0 and  “ t, buu, where n means “n copies of

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.10. EXTENDED BACKUS–NAUR FORM 63

.” For instance, the strings ab, aaaabbbb, and aaaaaaaabbbbbbbb are sentences in
the language, but the strings a, abb, ba, and aaabb are not. Is this language regular?
Explain.

Exercise 2.10.18 Define an unambiguous, context-free grammar for a language L
of palindromes of binary numbers. A palindrome is a string that reads the same
forward as backward. For example, the strings 0, 1, 00, 11, 101, and 100101001
are palindromes, while the strings 10, 01, and 10101010 are not. The empty string
ε is not in this language. Formally, L “ tr |  P t0,1u‹u, where r means “a
reversed copy of .”

Exercise 2.10.19 Matching syntactic entities (e.g., parentheses, brackets, or braces)
is an important aspect of many programming languages. Define a context-free
grammar capable of generating only balanced strings of (nested or flat) matched
parentheses. The empty string ε is not in this language. For instance, the strings
pq, pqpq, ppqq, ppqpqqpq, and pppqpqqpqq are sentences in this language, while the strings
qp, qpq, qpqp, ppqpq, pqqpp, and pppqpqq are not. Note that not all strings with the same
number of open and close parentheses are in this language. For example, the
strings qp and qpqp are not sentences in this language. State whether your grammar
is ambiguous and, if it is ambiguous, prove it.

Exercise 2.10.20 Define an unambiguous, context-free grammar for the language of
Exercise 2.10.19.

Exercise 2.10.21 Define a context-free grammar for a language L of binary numbers
that contain the same number of 0s and 1s. Formally, L “ t |  P t0,1u‹ and the
number of 0s in  equals the number of 1s in u. For instance, the strings 01, 10,
0110, 1010, 011000100111, and 000001111011 are sentences in the language, while
the strings 0, 1, 00, 11, 1111000, 01100010011, and 00000111011 are not. The empty
string ε is not in this language. Indicate whether your grammar is ambiguous and,
if it is ambiguous, prove it.

Exercise 2.10.22 Solve Exercise 2.10.21 with an unambiguous grammar.

Exercise 2.10.23 Rewrite the grammar in Section 2.9.3 in EBNF.

Exercise 2.10.24 The following grammar for if–else statements has been
proposed to eliminate the dangling else ambiguity (Aho, Sethi, and Ullman 1999,
Exercise 4.5, p. 268):

ăstmtą ::= if ăeprą ăstmtą|ămtched_stmtą
ămtched_stmtą ::= if ăeprą ămtched_stmtą else ăstmtą
ămtched_stmtą ::= ăotherą

where the non-terminal ă other ą generates some non-if statement such as a
print statement. Prove that this grammar is still ambiguous.

Exercise 2.10.25 Define an unambiguous grammar to remedy the dangling else
problem (Section 2.9.3).

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

64 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

Exercise 2.10.26 Surprisingly enough, the abilities of programmers have histori-
cally had little influence on programming language design and implementation,
despite programmers being the primary users of programming languages! For
instance, the ability to nest comments is helpful when a programmer desires to
comment out a section of code that may already contain a comment. However, the
designers of C decided to forbid nesting comments. That is, comments cannot nest
in C. As a consequence, the following code is not syntactically valid in C:

1 /* the following function contains a bug;
2 I'll just comment it out for now.
3 void f() {
4 /* an integer x */
5 i n t x;
6 ...
7 }
8 */

Why did the designers of C decide to forbid nesting comments?

Exercise 2.10.27 Give a specific example of semantics in programming languages
not mentioned in this chapter.

Exercise 2.10.28 Can a language whose sentences are all sets from an infinite
universe of items be defined with a context-free grammar? Explain.

Exercise 2.10.29 Can a language whose sentences are all sets from a finite universe
of items be defined with a context-free grammar? Explain.

Exercise 2.10.30 Consider the language L of binary strings where the first half
of the string is identical to the second half (i.e., all sentences have even length).
For instance, the strings 11, 0000, 0101, 1010, 010010, 101101, and 11111111,
are sentences in the language, but the strings 0110 and 1100 are not. Formally,
L “ t |  P t0,1u‹u. Is this language context-free? If so, give a context-free
grammar for it. If not, state why not.

2.11 Context-Sensitivity and Semantics

Context-free grammars, by definition, cannot represent context in language. A
classical example of context-sensitivity in English is “the first letter of a sentence
must be capitalized.” A context-sensitive grammar8 for this property of English
sentences is:

ăsentenceą Ñ ăstrtąărtceąănonąăerbąăderbą.
ăstrtąărtceą Ñ A | An | The

ărtceą Ñ a | an | the

8. Note that the use of the words -free and -sensitive in the names of formal grammars is inconsistent.
The -free in context-free grammar indicates what such a grammar is unable to model—namely, context.
In contrast, the -sensitive in context-sensitive grammar indicates what such a grammar can model.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.11. CONTEXT-SENSITIVITY AND SEMANTICS 65

In a context-sensitive grammar, the left-hand side of a production rule is not
limited to one non-terminal, as is the case in context-free grammars. In this
example, the production rule “ărtceąÑ A | An | The” only applies in the
context of ăstrtą to the left of ărtceą; that is, the non-terminal ăstrtą
provides the context for the application of the rule.

The pattern to which the production rules of a context-sensitive grammar must
adhere are less restrictive than that of a context-free grammar. The productions
of a context-sensitive grammar may have more than one non-terminal on the left-
hand side. Formally, a grammar is a context-sensitive grammar if and only if every
production rule is in the form:

αXβ Ñ αγβ

where X P V and α,β, γ P p Y Vq‹, and X can be replaced with γ only in the
context of α to its left and β to its right. The strings α and β may be empty in the
productions of a context-sensitive grammar, but γ ‰ ε. However, the rule S Ñ ε
is permitted as long as S does not appear on the right-hand side of any production.

Context and semantics are often confused. Recall that semantics deals with the
meaning of a sentence. Context can be used to validate or discern the meaning of a
sentence. Context can be used in two ways:

• Determine semantic validity. A classical example of context-sensitivity in
programming languages is “a variable must be declared before it is used.”
For instance, while the following C program is syntactically valid, context
reveals that it is not semantically valid because the variable y is referenced,
but never declared:

i n t main() {
i n t x;
y = 1;

}

Even if all referenced variables are declared, context may still be necessary to
identify type mismatches. For instance, consider the following C++ program:

1 i n t main() {
2 i n t x;
3 bool y;
4
5 x = 1;
6 y = f a l s e;
7 x = y;
8 }

Again, while this program is syntactically correct, it is not semantically
valid because of the assignment of the value of a variable of one type to
a variable of a different type (line 6). We need methods of static semantics
(i.e., before run-time) to address this problem. We can generate semantically
invalid programs from a context-free grammar because the production rules
of a context-free grammar always apply, regardless of the context in which

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

66 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

a non-terminal on the left-hand side appears; hence, the rules are called
context-free.

• Disambiguate semantic validity. Another example of context-sensitivity in
programming languages is the ‹ operator in C. Its meaning is dependent
upon the context in which it is used. It can be used (1) as the multiplication
operator (e.g., x*3); (2) as the pointer dereferencing operator (e.g., *ptr);
and (3) in the declaration of pointer types (e.g., int* ptr). Without context,
the semantics of the expression x* y are ambiguous. If we see the declara-
tions int x=1, y=2; immediately preceding this expression, the meaning
of the * is multiplication. However, if the statement typedef int x;
precedes the expression x* y, it declares a pointer to an int.

Formalisms, including context-sensitive grammars, for dealing with these and
other issues of semantics in programming languages are not easily implementable.
Context-free grammars lend themselves naturally to the implementation of parsers
(as we see in Chapter 3); context-sensitive grammars do not and, therefore, are
not helpful in parser implementation. Thus, while C, Python, and Scheme are
context-sensitive languages, the parser for them is implemented using a context-
free grammar.

A practical approach to modeling context in programming languages is to
infuse context, where practically possible, into a context-free grammar—that is,
to include additional production rules to help (brute-)force the syntax to imply the
semantics.9 This approach involves designing the context-free production rules in
such a way that they cannot generate a semantically invalid program. We used this
approach previously to enforce proper operator precedence and associativity.

Applying this approach to capture more sophisticated semantic rules,
including the requirement that variables must be declared prior to use, leads
to an inordinately large number of production rules; consequently it is often
unreasonable and impractical. For instance, consider the determination of whether
a collection of items is a set (i.e., an unordered collection without duplicates).
That determination requires context. In particular, to determine if an element
disqualifies the collection from being a set, we must examine the other items in the
collection (i.e., the context). If the universe from which the items in the collection
are drawn is finite, we can simply enumerate all possible sets from that universe.
Such an enumeration results in not only a context-free grammar, but also a regular
grammar. However, that approach can involve a large number of production rules.
A device called an attribute grammar is an extension to a context-free grammar that
helps bridge the gap between content-free and context-sensitive grammars, while
being practical for use in language implementation (Section 2.14).

While we encounter semantics of programming languages throughout this
text, we briefly comment on formal semantics here. There are two types of

9. Both approaches—use of context-sensitive grammar and use of a context-free grammar with many
rules modeling the context—model context in a purely syntactic way (i.e., without ascribing meaning
to the language). For instance, with a context-sensitive grammar or a context-free grammar with many
rules to enforce semantic rules for C, it is impossible to generate a program referencing an undeclared
variable, and a program referencing an undeclared variable would be syntactically invalid.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.12. THEMATIC TAKEAWAYS 67

semantics: static and dynamic. In general, in computing, these terms mean
before and during run-time, respectively. An example of static semantics is the
detection of the use of an undeclared variable or a type incompatibility (e.g.,
int x = "this is not an int";). Attribute grammars can be used for
static semantics.

There are three approaches to dynamic semantics: operational, denotational,
and axiomatic. Operational semantics involves discerning the meaning of a
programming construct by exploring the effects of running a program using it.
Since an interpreter for a programming language, through its implementation,
implicitly specifies the semantics of the language it interprets, running a program
through an interpreter is an avenue to explore the operational semantics of
the expressions and statements within the program. (Building interpreters for
programming languages with a variety of constructs and features is the primary
focus of Chapters 10–12.) Consider the English sentence “I chose wisely” which
is in the past tense. If we replace the word “chose” with “chos,” the sentence has
a lexics error because the substring “chos” is not lexically valid. However, if we
replace the word “chose” with “choose,” the sentence is lexically, syntactically, and
semantically valid, but in the present tense. Thus, the semantics of the sentence are
valid, but unintended. Such a semantic error, like a run-time error in a program, is
difficult to a detect.

Conceptual Exercises for Section 2.11

Exercise 2.11.1 Give an example of a property in programming languages (other
than any of those given in the text) that is context-sensitive or, in other words, an
example property that is not context-free.

Exercise 2.11.2 A context-sensitive grammar can express context that a context-free
grammar cannot model. State what a context-free grammar can express that a regular
grammar cannot model.

Exercise 2.11.3 We stated in this section that sometimes we can infuse context
into a context-free grammar (often by adding more production rules) even though
a context-free grammar has no provisions for representing context. Express the
context-sensitive grammar given in Section 2.11 enforcing the capitalization of the
first character of an English sentence using a context-free grammar.

Exercise 2.11.4 Define a context-free grammar for the language whose sentences
correspond to sets of the elements , b, and c. For instance, the sentences tu,
t, bu, t, b, cu are in the language, but the sentences t, u, tb, , bu, and
t, b, c, u are not.

2.12 Thematic Takeaways

• The identifiers and numbers in programming languages can be described by
a regular grammar.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

68 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

• The nested expressions and blocks in programming languages can be
described by a context-free grammar.

• Neither a regular nor a context-free grammar can describe the rule that a
variable must be declared before it is used.

• Grammars are language recognition devices as well as language generative
devices.

• An ambiguous grammar poses a problem for language recognition.
• Two parse trees for the same sentence from a language are sufficient to prove

that the grammar for the language is ambiguous.
• Semantic properties, including precedence and associativity, can be modeled

in a context-free grammar.

2.13 Chapter Summary

This chapter addresses constructs (e.g., regular expressions, grammars, automata)
for defining (i.e., denoting, generating, and recognizing, respectively) languages
and the capabilities (or limitations) of those constructs in relation to programming
languages (Table 2.12). A regular expression denotes a set of strings—that is, the
sentences of the language that the regular expression denotes. Regular expressions
and regular grammars can capture the rules for a valid identifier in a programming
language. More generally, regular expressions can model the lexics (i.e., lexical
structure) of a programming language. Context-free grammars can capture the
concept of balanced entities nested arbitrarily deep (e.g., parentheses, brackets,
curly braces) whose use is pervasive in the syntactic structures (e.g., mathematical
expression, if–else blocks) of programming languages. More generally, context-
free grammars can model the syntax (i.e., syntactic structure) of a programming
language. (Formally, context-free grammars are expressive enough to define
formal languages that require an unbounded amount of memory used in a
restricted way [i.e., LIFO] to recognize sentences in those languages.) If a sentence
from a language has more than one parse tree, then the grammar for the language
is ambiguous. Neither regular grammars nor context-free grammars can capture

Formal Language/ Modeling Example Language PL Analog PL Code Example
Grammar Capability

Regular lexemes Lp‹b‹q tokens (ids, #s) index1; 17.76
Context-free balanced tnbn | n ě 0u nested expressions/ (a*(b+c)); if/else

pairs blocks
Context-free palindromes tr |  P t, bu‹u — —
Context-sensitive one-to-one t |  P t, bu‹u variable declarations int a; a=1;

mapping and references
Context-sensitive context tnbncn | n ě 0u — —

Table 2.12 Formal Grammar Capabilities Vis-à-Vis Programming Language
Constructs (Key: PL = programming language.)

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

2.14. NOTES AND FURTHER READING 69

(defined/generated by) (recognized by) (constraints on)
Type Formal Language Formal Grammar Automaton Production

(model of computation) Rules
Type-3 regular language regular grammar deterministic finite

automaton
X Ñ zY | z or
X Ñ Yz | z

Type-2 context-free
language

context-free grammar pushdown
automaton

X Ñ γ

Type-1 context-sensitive
language

context-sensitive
grammar

linear-bounded
automaton

αXβ Ñ αγβ

Type-0 recursively
enumerable
language

unrestricted grammar Turing machine α Ñ β

Table 2.13 Summary of Formal Languages and Grammars, and Models of
Computation

the rule that a variable must be declared before it is used. However, we can model
some semantic properties, including operator precedence and associativity, with
a context-free grammar. Thus, not all formal grammars have the same expressive
power; likewise, not all automata have the same power to decide if a string is
a sentence in a language. (The corollary is that there are limits to computation.)
While most programming languages are context-sensitive (because variables often
must be declared before they are used), context-free grammars are the theoretical
basis for the syntax of programming languages (in both language definition and
implementation, as we see in Chapters 3 and 4).

Table 2.13 summarizes each of the progressive four types of formal grammars
in the Chomsky Hierarchy; the class of formal language each grammar generates;
the type of automaton that recognizes each member of each class of those formal
languages; and the constraints on the production rules of the grammars. Regular
and context-free grammars are fundamental topics in the study of the formal
languages. In our course of study, they are useful for both describing the syntax
of and parsing programming languages. In particular, regular and context-free
grammars are essential ingredients in scanners and parsers, respectively, which
are discussed in Chapter 3.

2.14 Notes and Further Reading

We refer readers to Webber (2008) for a practical, more detailed discussion of
formal languages, grammars, and automata theory.

John Backus and Peter Naur are the recipients of the 1977 and 2005 ACM A. M.
Turing Awards, respectively, in part, for their contributions to language design
(through Fortran and ALGOL 60, respectively) and their contributions of formal
methods for the specification of programming languages.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

70 CHAPTER 2. FORMAL LANGUAGES AND GRAMMARS

Attribute grammars are a formalism contributed by Donald Knuth, which
can be used to capture semantics in a practical way; these grammars are
context-free grammars annotated with semantics rules and checks. Knuth is the
recipient of the 1974 ACM A. M. Turing Award for contributions to programming
language design, including attribute grammars, and to “the art of computer
programming”—communicated through his monograph titled The Art of Computer
Programming.

© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION.

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

	Formal Languages and Grammars
	Chapter Objectives
	Introduction to Formal Languages
	Regular Expressions and Regular Languages
	Regular Expressions
	Finite-State Automata
	Regular Languages

	Grammars and Backus–Naur Form
	Regular Grammars

	Context-Free Languages and Grammars
	Language Generation: Sentence Derivations
	Language Recognition: Parsing
	Syntactic Ambiguity
	Modeling Some Semantics in Syntax
	Parse Trees

	Grammar Disambiguation
	Operator Precedence
	Associativity of Operators
	The Classical Dangling else Problem

	Extended Backus–Naur Form
	Context-Sensitivity and Semantics
	Thematic Takeaways
	Chapter Summary
	Notes and Further Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [150 150]
 /PageSize [612.000 792.000]
>> setpagedevice

