
6 CHAPTER
Relational Database
Management Systems and SQL

■ The history of
relational database
systems and SQL

■ How the three-level
architecture is
implemented in
relational database
management
systems

■ How to create and
modify a
conceptual-level
database structure
using SQL DDL

■ How to retrieve and
update data in a
relational database
using SQL DML

■ How to enforce
constraints in
relational databases

Chapter Objectives
In this chapter you will
learn the following:

6.0 Chapter Objectives

6.1 Brief History of SQL in Relational Database Systems

6.2 Architecture of a Relational Database Management System

6.3 Defining the Database: SQL DDL

6.3.1 CREATE TABLE

6.3.1.1 Data Types

6.3.1.2 Column and Table Constraints

6.3.2 CREATE INDEX

6.3.3 ALTER TABLE, RENAME TABLE

6.3.4 DROP Statements

6.4 Manipulating the Database: SQL DML

6.4.1 Introduction to the SELECT Statement

6.4.2 SELECT Using Multiple Tables

6.4.3 SELECT with Other Operators

6.4.4 Operators for Updating: UPDATE, INSERT, DELETE

6.5 Active Databases

6.5.1 Enabling and Disabling Constraints

6.5.2 SQL Triggers

6.6 Using COMMIT and ROLLBACK Statements

6.7 SQL Programming

6.7.1 Embedded SQL

6.7.2 ODBC and JDBC

6.7.3 SQL PSM

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 286

6.8 Creating and Using Views

6.9 The System Catalog

6.10 Chapter Summary

Exercises

Lab Exercises

1. Exploring the Oracle Database for University Example
(provided on CD)

2. Creating and Using a Simple Database in Oracle

SAMPLE PROJECT

Steps 6.1–6.6: Creating and Using a Relational Database for
The Art Gallery

STUDENT PROJECTS

Steps 6.1–6.6: Creating and Using a Relational Database for
the Student Projects

6.1 Brief History of SQL in Relational Database Systems 287

■ How to terminate
relational
transactions

■ How SQL is used in
a programming
environment

■ How to create
relational views

■ When and how to
perform operations
on relational views

■ The structure and
functions of a
relational database
system catalog

■ The functions of the
various components
of a relational
database
management system

6.1 Brief History of SQL in Relational Database Systems

As described in Chapter 4, the relational model was first proposed by E. F.
Codd in 1970. D. D. Chamberlin and others at the IBM San Jose Research
Laboratory developed a language now called SQL, or Structured Query
Language, as a data sublanguage for the relational model. Originally
spelled SEQUEL, the language was presented in a series of papers starting
in 1974, and it was used in a prototype relational system called System R,
which was developed by IBM in the late 1970s. Other early prototype rela-
tional database management systems included INGRES, which was devel-
oped at the University of California at Berkeley, and the Peterlee Relational
Test Vehicle, developed at the IBM UK Scientific Laboratory. System R was
evaluated and refined over a period of several years, and it became the
basis for IBM’s first commercially available relational database manage-
ment system, SQL/DS, which was announced in 1981. Another early com-
mercial database management system, Oracle, was developed in the late
1970s using SQL as its language. IBM’s DB2, also using SQL as its lan-
guage, was released in 1983. Microsoft SQL Server, MySQL, Informix,
Sybase, dBase, Paradox, r: Base, FoxPro, and hundreds of other relational
database management systems have incorporated SQL.

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 287

Both the American National Standards Institute (ANSI) and the Interna-
tional Standards Organization (ISO) adopted SQL as a standard language
for relational databases and published specifications for the SQL language
in 1986. This standard is usually called SQL1. A minor revision, called
SQL-89, was published three years later. A major revision, SQL2, was
adopted by both ANSI and ISO in 1992. The first parts of the SQL3 stan-
dard, referred to as SQL:1999, were published in 1999. Major new features
included object-oriented data management capabilities and user-defined
data types. Most vendors of relational database management systems use
their own extensions of the language, creating a variety of dialects around
the standard.

SQL has a complete data definition language (DDL) and data manipula-
tion language (DML) described in this chapter, and an authorization lan-
guage, described in Chapter 9. Readers should note that different
implementations of SQL vary slightly from the standard syntax presented
here, but the basic notions are the same.

6.2 Architecture of a Relational Database
Management System

Relational database management systems support the standard three-level
architecture for databases described in Section 2.6. As shown in Figure 6.1,
relational databases provide both logical and physical data independence
because they separate the external, conceptual, and internal levels. The
conceptual level, which corresponds to the logical level for relational data-
bases, consists of base tables that are physically stored. These tables are
created by the database administrator using a CREATE TABLE command,
as described in Section 6.3. A base table can have any number of indexes,
created by the DBA using the CREATE INDEX command. An index is
used to speed up retrieval of records based on the value in one or more
columns. An index lists the values that exist for the indexed column(s),
and the location of the records that have those values. Most relational
database management systems use B trees or B+ trees for indexes. (See
Appendix A.) On the physical level, the base tables are represented, along
with their indexes, in files. The physical representation of the tables may
not correspond exactly to our notion of a base table as a two-dimensional
object consisting of rows and columns. However, the rows of the table do
correspond to physically stored records, although their order and other

288 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 288

details of storage may be different from our concept of them. The data-
base management system, not the operating system, controls the internal
structure of both the data files and the indexes. The user is generally
unaware of what indexes exist, and has no control over which index will
be used in locating a record. Once the base tables have been created, the
DBA can create “views” for users, using the CREATE VIEW command,
described in Section 6.8. A view may be a subset of a single base table, or it
may be created by combining base tables. Views are “virtual tables,” not
permanently stored, but created when the user needs to access them. Users
are unaware of the fact that their views are not physically stored in table
form. In a relational system, the word “view” means a single virtual table.
This is not exactly the same as our term “external view,” which means the
database as it appears to a particular user. In our terminology, an external
view may consist of several base tables and/or views.

One of the most useful features of a relational database is that it permits
dynamic database definition. The DBA, and users he or she authorizes to do
so, can create new tables, add columns to old ones, create new indexes,
define views, and drop any of these objects at any time. By contrast, many
other systems require that the entire database structure be defined at

6.2 Architecture of a Relational Database Management System 289

User 1 User 2 User 3 User n

View A View B View C View K

Base
table1 +
indexes

Base
table2 +
indexes

Base
table3 +
indexes

Base
tablem +
indexes

File 1 File 2 File p

External
Level

Conceptual
Level

Internal
Level

Physical data
independence

Logical data
independence

FIGURE 6.1
Three level architecture for relational databases

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 289

creation time, and that the entire system be halted and reloaded when any
structural changes are made. The flexibility of relational databases encour-
ages users to experiment with various structures and allows the system to be
modified to meet their changing needs. This enables the DBA to ensure that
the database is a useful model of the enterprise throughout its life cycle.

6.3 Defining the Database: SQL DDL

The most important SQL Data Definition Language (DDL) commands
are the following:

CREATE TABLE
CREATE INDEX
ALTER TABLE
RENAME TABLE
DROP TABLE
DROP INDEX

These statements are used to create, change, and destroy the logical struc-
tures that make up the conceptual model. These commands can be used at
any time to make changes to the database structure. Additional commands
are available to specify physical details of storage, but we will not discuss
them here, since they are specific to the system.

We will apply these commands to the following example, which we have
used in previous chapters:

Student (stuId, lastName, firstName, major, credits)
Faculty (facId, name, department, rank)
Class (classNumber, facId, schedule, room)
Enroll (classNumber, stuId, grade)

6.3.1 Create Table

This command is used to create the base tables that form the heart of a
relational database. Since it can be used at any time during the lifecycle of
the system, the database developer can start with a small number of tables
and add to them as additional applications are planned and developed. A
base table is fairly close to the abstract notion of a relational table. It con-
sists of one or more column headings, which give the column name and
data type, and zero or more data rows, which contain one data value of
the specified data type for each of the columns. As in the abstract rela-

290 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 290

tional model, the rows are considered unordered. However, the columns
are ordered left-to-right, to match the order of column definitions in the
CREATE TABLE command. The form of the command is:

CREATE TABLE base-table-name (colname datatype [column constraints]
[,colname datetype [column constraints - NULL/NOT NULL, DEFAULT . . . ,

UNIQUE, CHECK . . . , PRIMARY KEY . . .]]
. . .
[table constraints - PRIMARY KEY . . . , FOREIGN KEY . . . , UNIQUE
. . . , CHECK . . .]
[storage specifications]);

Here, base-table-name is a user-supplied name for the table. No SQL key-
words may be used, and the table name must be unique within the data-
base. For each column, the user must specify a name that is unique within
the table, and a data type. The optional storage specifications section of
the CREATE TABLE command allows the DBA to name the tablespace
where the table will be stored. If the tablespace is not specified, the data-
base management system will create a default space for the table. Those
who wish to can ignore system details and those who desire more control
can be very specific about storage areas.

Figure 6.2 shows the commands to create the base tables for a database for
the University example.

6.3.1.1 Data Types

Built-in data types include various numeric types, fixed-length and
varying-length character strings, bit strings, and user-defined types. The
available data types vary from DBMS to DBMS. For example, the most
common types in Oracle are CHAR(N), VARCHAR2(N),
NUMBER(N,D), DATE, and BLOB (binary large object). In DB2, types
include SMALLINT, INTEGER, BIGINT, DECIMAL/NUMERIC, REAL,
DOUBLE, CHAR(N), VARCHAR(N), LONG VARCHAR, CLOB,
GRAPHIC, DBCLOB, BLOB, DATE, TIME, and TIMESTAMP. Microsoft
SQL Server types include NUMERIC, BINARY, CHAR, VARCHAR DATE-
TIME, MONEY, IMAGE, and others. Microsoft Access supports several
types of NUMBER, as well as TEXT, MEMO, DATE/TIME, CURRENCY,
YES/NO, and others. In addition, some systems, such as Oracle, allow
users to create new domains, built on existing data types. Rather than
using one of the built-in data types, users can specify domains in advance,
and they can include a check condition for the domain. SQL:1999 allows

6.3 Defining the Database: SQL DDL 291

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 291

292 CHAPTER 6 Relational Database Management Systems and SQL

CREATE TABLE Student (

stuId CHAR(6),

lastName CHAR(20) NOT NULL,

firstName CHAR(20) NOT NULL,

major (CHAR(10),

credits SMALLINT DEFAULT 0,

CONSTRAINT Student_stuId_pk PRIMARY KEY (stuId)),

CONSTRAINT Student_credits_cc CHECK ((CREDITS>=0) AND (credits < 150));

CREATE TABLE Faculty (

facId CHAR(6),

name CHAR(20) NOT NULL,

department CHAR(20) NOT NULL,

rank CHAR(10),

CONSTRAINT Faculty_facId_pk PRIMARY KEY (facId));

CREATE TABLE Class (

classNumber CHAR(8),

facId CHAR(6) NOT NULL,

schedule CHAR(8),

room CHAR(6),

CONSTRAINT Class_classNumber_pk PRIMARY KEY (classNumber),

CONSTRAINT Class_facId_fk FOREIGN KEY (facId) REFERENCES Faculty (facId) ON DELETE
NO ACTION);

CREATE TABLE Enroll (

classNumber CHAR(8),

stuId CHAR(6),

grade CHAR(2),

CONSTRAINT Enroll_classNumber_stuId_pk PRIMARY KEY (classNumber, stuId),

CONSTRAINT Enroll_classNumber_fk FOREIGN KEY (classNumber) REFERENCES Class
(classNumber) ON DELETE NO ACTION,

CONSTRAINT Enroll_stuId_fk FOREIGN KEY (stuId) REFERENCES Student (stuId) ON DELETE CASCADE);

FIGURE 6.2
SQL DDL statements to
create Oracle tables for
the University example.

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 292

the creation of new distinct data types using one of the previously defined
types as the source type. For example, we could write:

CREATE DOMAIN creditValues INTEGER
DEFAULT 0
CHECK (VALUE >=0 AND VALUE <150);

Once a domain has been created, we can use it as a data type for attributes.
For example, when we create the Student table, for the specification of
credits we could then write:

credits creditValues, . . .

in place of,

credits SMALLINT DEFAULT 0,
. . .
CONSTRAINT Student_credits_cc CHECK ((credits>=0) AND (credits < 150);

However, when we create distinct types, SQL:1999 does not allow us to
compare their values with values of other attributes having the same
underlying source type. For example, if we use the creditValues
domain for credits, we cannot compare credits with another
attribute whose type is also SMALLINT—for example, with age, if we had
stored that attribute. We cannot use the built-in SQL functions such as
COUNT, AVERAGE, SUM, MAX, or MIN on distinct types, although we
can write our own definitions of functions for the new types.

6.3.1.2 Column and Table Constraints

The database management system has facilities to enforce data correct-
ness, which the DBA should make use of when creating tables. Recall from
Section 4.4 that the relational model uses integrity constraints to protect
the correctness of the database, allowing only legal instances to be created.
These constraints protect the system from data entry errors that would
create inconsistent data. Although the table name, column names, and
data types are the only parts required in a CREATE TABLE command,
optional constraints can and should be added, both at the column level
and at the table level.

The column constraints include options to specify NULL/NOT NULL,
UNIQUE, PRIMARY KEY, CHECK and DEFAULT for any column, imme-
diately after the specification of the column name and data type. If we do
not specify NOT NULL, the system will allow the column to have null val-
ues, meaning the user can insert records that have no values for those

6.3 Defining the Database: SQL DDL 293

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 293

fields. When a null value appears in a field of a record, the system is able to
distinguish it from a blank or zero value, and treats it differently in com-
putations and logical comparisons. It is desirable to be able to insert null
values in certain situations; for example, when a college student has not yet
declared a major we might want to set the major field to null. However,
the use of null values can create complications, especially in operations
such as joins, so we should use NOT NULL when it is appropriate. We can
also specify a default value for a column, if we wish to do so. Every record
that is inserted without a value for that field will then be given the default
value automatically. We can optionally specify that a given field is to have
unique values by writing the UNIQUE constraint. In that case, the system
will reject the insertion of a new record that has the same value in that
field as a record that is already in the database. If the primary key is not
composite, it is also possible to specify PRIMARY KEY as a column con-
straint, simply by adding the words PRIMARY KEY after the data type for
the column. Clearly we cannot allow duplicate values for the primary key.
We also disallow null values, since we could not distinguish between two
different records if they both had null key values, so the specification of
PRIMARY KEY in SQL carries an implicit NOT NULL constraint as well
as a UNIQUE constraint. However, we may wish to ensure uniqueness for
candidate keys as well, and we should specify UNIQUE for them when we
create the table. The system automatically checks each record we try to
insert to ensure that data items for columns that have been described as
unique do not have values that duplicate any other data items in the data-
base for those columns. If a duplication might occur, it will reject the
insertion. It is also desirable to specify a NOT NULL constraint for candi-
date keys, when it is possible to ensure that values for these columns will
always be available. The CHECK constraint can be used to verify that val-
ues provided for attributes are appropriate. For example, we could write:

credits SMALLINT DEFAULT 0 CHECK ((credits>=0) AND (credits < 150)),

Table constraints, which appear after all the columns have been declared,
can include the specification of a primary key, foreign keys, uniqueness,
checks, and general constraints that can be expressed as conditions to be
checked. If the primary key is a composite, it must be identified using a
table constraint rather than a column constraint, although even a primary
key consisting of a single column can be identified as a table constraint.
The PRIMARY KEY constraint enforces the uniqueness and not null con-
straints for the column(s) identified as the primary key. The FOREIGN

294 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 294

KEY constraint requires that we identity the referenced table where the
column or column combination is a primary key. The SQL standard
allows us to specify what is to be done with records containing the foreign
key values when the records they relate to are updated or deleted in their
home table. For the University example, what should happen to a Class
record when the record of faculty member assigned to teach the class is
deleted or the facId of the Faculty record is updated? For the deletion
case, the DBMS could automatically:

■ Delete all Class records for that faculty member, an action per-
formed when we specify ON DELETE CASCADE in the foreign
key specification in SQL.

■ Set the facId in the Class record to a null value, an action per-
formed when we write ON DELETE SET NULL in SQL.

■ Set the facId to some default value such as F999 in the Class table,
an action performed when we write ON DELETE SET DEFAULT in
SQL. (This choice requires that we use the DEFAULT column con-
straint for this column prior to the foreign key specification.)

■ Not allow the deletion of a Faculty record if there is a Class record
that refers to it, an action performed when we specify ON
DELETE NO ACTION in SQL.

The same actions, with similar meanings, can be specified in an ON
UPDATE clause; that is,

ON UPDATE CASCADE/SET NULL/SET DEFAULT/NO ACTION

For both deletion and update, the default is NO ACTION, essentially disal-
lowing changes to a record in a home relation that would cause inconsistency
with records that refer to it. As shown in Figure 6.2, for the Class table we
have chosen the ON UPDATE CASCADE. Also note the choices we made for
the Enroll table, for changes made to both classNumber and stuId.

The table uniqueness constraint mechanism can be used to specify that
the values in a combination of columns must be unique. For example, to
ensure that no two classes have exactly the same schedule and room, we
would write:

CONSTRAINT Class_schedule_room_uk UNIQUE (schedule, room)

Recall from Section 4.4 that the uniqueness constraint allows us to specify
candidate keys. The above constraint says that {schedule, room} is a

6.3 Defining the Database: SQL DDL 295

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 295

candidate key for Class. We could also specify that {facId, schedule}
is a candidate key by,

CONSTRAINT Class_facId_schedule_uk UNIQUE (facId, schedule)

since a faculty member cannot teach two classes with exactly the same
schedule.

Constraints, whether column or table level, can optionally be given a
name, as illustrated in the examples. If we do not name them, the system
will generate a unique constraint name for each constraint. The advantage
of naming constraints is that we can then refer to them easily. There are
SQL commands to allow us to disable, enable, alter, or drop constraints at
will, provided we know their names. It is good practice to use a consistent
pattern in naming constraints. The pattern illustrated here is the table-
name, column name(s) and an abbreviation for the constraint type (pk,
fk, nn, uk, cc), separated by underscores.

6.3.2 Create Index

We can optionally create indexes for tables to facilitate fast retrieval of
records with specific values in a column. An index keeps track of what val-
ues exist for the indexed column, and which records have those values. For
example, if we have an index on the lastName column of the Student
table, and we write a query asking for all students with last name of Smith,
the system will not have to scan all Student records to pick out the desired
ones. Instead, it will read the index, which will point it to the records with
the desired name. A table can have any number of indexes, which are
stored as B-trees or B+ trees in separate index files, usually close to the
tables they index. (See Appendix A for a description of tree indexes.)
Indexes can be created on single fields or combinations of fields. However,
since indexes must be updated by the system every time the underlying
tables are updated, additional overhead is required. Aside from choosing
which indexes will exist, users have no control over the use or mainte-
nance of indexes. The system chooses which, if any, index to use in search-
ing for records. Indexes are not part of the SQL standard, but most
DBMSs support their creation. The command for creating an index is:

CREATE [UNIQUE] INDEX indexname ON basetablename (colname [order]
[,colname [order]] . . .) [CLUSTER] ;

If the UNIQUE specification is used, uniqueness of the indexed field or
combination of fields will be enforced by the system. Although indexes

296 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 296

can be created at any time, we may have a problem if we try to create a
unique index after the table has records stored in it, because the values
stored for the indexed field or fields may already contain duplicates. In
this case, the system will not allow the unique index to be created. To cre-
ate the index on lastName for the Student table we would write:

CREATE INDEX Student_lastName ON STUDENT (lastName);

The name of the index should be chosen to indicate the table and the field
or fields used in the index. Any number of columns, regardless of where
they appear on the table, may be used in an index. The first column
named determines major order, the second gives minor order, and so on.
For each column, we may specify that the order is ascending, ASC, or
descending, DESC. If we choose not to specify order, ASC is the default. If
we write,

CREATE INDEX Faculty_department_name ON Faculty (department ASC,
name ASC);

then an index file called Faculty_Department_Name will be created for the
Faculty table. Entries will be in alphabetical order by department. Within
each department, entries will be in alphabetical order by faculty name.

Some DBMSs allow an optional CLUSTER specification for only one
index for each table. If we use this option, the system will store records
with the same values for the indexed field(s) close together physically, on
the same page or adjacent pages if possible. If we create a clustered index
for the field(s) used most often for retrieval, we can substantially improve
performance for those applications needing that particular order of
retrieval, since we will be minimizing seek time and read time. However, it
is the system, not the user, that chooses to use a particular index, even a
clustered one, for data retrieval.

Oracle automatically creates an index on the primary key of each table
that is created. The user should create additional indexes on any field(s)
that are often used in queries, to speed up execution of those queries. For-
eign key fields, which are often used in joins, are good candidates for
indexing.

6.3.3 ALTER TABLE, RENAME TABLE

Once a table has been created, users might find that it more useful if it
contained an additional data item, did not have a particular column,
or had different constraints. Here, the dynamic nature of a relational

6.3 Defining the Database: SQL DDL 297

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 297

database structure makes it possible to change existing base tables. For
example, to add a new column on the right of the table, we use a com-
mand of the form:

ALTER TABLE basetablename ADD columnname datatype;

Notice we cannot use the NULL specification for the column. An ALTER
TABLE ..ADD command causes the new field to be added to all records
already stored in the table, and null values to be assigned to that field in all
existing records. Newly inserted records, of course, will have the additional
field, but we are not permitted to specify no nulls even for them.

Suppose we want to add a new column, cTitle, to our Class table. We
can do so by writing

ALTER TABLE Class ADD cTitle CHAR(30);

The schema of the Class table would then be:

Class(classNumber,facId,schedule,room,cTitle)

All old Class records would now have null values for cTitle, but we
could provide a title for any new Class records we insert, and update old
Class records by adding titles to them. We can also drop columns from
existing tables by the command:

ALTER TABLE basetablename DROP COLUMN columnname;

To drop the cTitle column and return to our original structure for the
Class table, we would write:

ALTER TABLE Class DROP COLUMN cTitle;

If we want to add, drop, or change a constraint, we can use the same
ALTER TABLE command. For example, if we created the Class table and
neglected to make facId a foreign key in Class, we could add the con-
straint at any time by writing:

ALTER TABLE Class ADD CONSTRAINT Class_facId_fk FOREIGN KEY (facId)
REFERENCES Faculty (facId)ON DELETE NO ACTION);

We could drop an existing named constraint using the ALTER TABLE
command. For example, to drop the check condition on the credits
attribute of Student that we created earlier, we could write:

ALTER TABLE Student DROP CONSTRAINT Student_credits_cc;

We can change the name of an existing table easily by the command:

RENAME TABLE old-table-name TO new-table-name;

298 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 298

6.3.4 DROP Statements

Tables can be dropped at any time by the SQL command:

DROP TABLE basetablename;

When this statement is executed, the table itself and all records contained
in it are removed. In addition, all indexes and, as we will see later, all views
that depend on it are dropped. Naturally, the DBA confers with potential
users of the table before taking such a drastic step. Any existing index can
be destroyed by the command:

DROP INDEX indexname;

The effect of this change may or may not be seen in performance. Recall
that users cannot specify when the system is to use an index for data
retrieval. Therefore, it is possible that an index exists that is never actually
used, and its destruction would have no affect on performance. However,
the loss of an efficient index that is used by the system for many retrievals
would certainly affect performance. When an index is dropped, any
access plans for applications that depend on it are marked as invalid.
When an application calls them, a new access plan is devised to replace
the old one.

6.4 Manipulating the Database: SQL DML

SQL’s query language is declarative, also called non-procedural, which
means that it allows us to specify what data is to be retrieved without giv-
ing the procedures for retrieving it. It can be used as an interactive lan-
guage for queries, embedded in a host programming language, or as a
complete language in itself for computations using SQL/PSM (Persistent
Stored Modules).

The SQL DML statements are:

SELECT
UPDATE
INSERT
DELETE

6.4.1 Introduction to the SELECT Statement

The SELECT statement is used for retrieval of data. It is a powerful
command, performing the equivalent of relational algebra’s SELECT,

6.4 Manipulating the Database: SQL DML 299

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 299

PROJECT, and JOIN, as well as other functions, in a single, simple state-
ment. The general form of SELECT is,

SELECT [DISTINCT] col-name [AS newname], [,col-name..] . . .
FROM table-name [alias] [,table-name] . . .
[WHERE predicate]
[GROUP BY col-name [,col-name] . . . [HAVING predicate]

or,

[ORDER BY col-name [,col-name] . . .];

The result is a table that may have duplicate rows. Since duplicates are
allowed in such a table, it is not a relation in the strict sense, but is referred
to as a multi-set or a bag. As indicated by the absence of square brackets,
the SELECT and the FROM clauses are required, but not the WHERE or
the other clauses. The many variations of this statement will be illustrated
by the examples that follow, using the Student, Faculty, Class,
and/or Enroll tables as they appear in Figure 6.3

■ Example 1. Simple Retrieval with Condition

Question: Get names, IDs and number of credits of all Math majors.

Solution: The information requested appears on the Student
table. From that table we select only the rows that have a value of
‘Math’ for major. For those rows, we display only the lastName,
firstName, stuId, and credits columns. Notice we are
doing the equivalent of relational algebra’s SELECT (in finding
the rows) and PROJECT (in displaying only certain columns). We
are also rearranging the columns.

SQL Query:

SELECT lastName, firstName, stuId, credits
FROM Student
WHERE major = ‘Math’;

Result:

lastName firstName stuId credits

Jones Mary S1015 42
Chin Ann S1002 36
McCarthy Owen S1013 9

Notice that the result of the query is a table or a multi-set.

300 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 300

6.4 Manipulating the Database: SQL DML 301

Student

FIGURE 6.3
The University Database (Same as Figure 1.1)

stuld lastName firstName major credits

S1001 Smith Tom History 90

S1002 Chin Ann Math 36

S1005 Lee Perry History 3

S1010 Burns Edward Art 63

S1013 McCarthy Owen Math 0

S1015 Jones Mary Math 42

S1020 Rivera Jane CSC 15

Faculty

fac ld name department rank

F101 Adams Art Professor

F105 Tanaka CSC Instructor

F110 Byrne Math Assistant

F115 Smith History Associate

F221 Smith CSC Professor

classNumber facld schedule room

ART103A F101 MWF9 H221

CSC201A F105 TuThF10 M110

CSC203A F105 MThF12 M110

HST205A F115 MWF11 H221

MTH101B F110 MTuTh9 H225

MTH103C F110 MWF11 H225

Enroll

stuld classNumber grade

S1001 ART103A A

S1001 HST205A C

S1002 ART103A D

S1002 CSC201A F

S1002 MTH103C B

S1010 ART103A

S1010 MTH103C

S1020 CSC201A B

S1020 MTH101B A

Class

■ Example 2. Use of Asterisk Notation for “all columns”

Question: Get all information about CSC Faculty.

Solution: We want the entire Faculty record of any faculty mem-
ber whose department is ‘CSC’. Since many SQL retrievals require
all columns of a single table, there is a short way of expressing “all

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 301

columns,” namely by using an asterisk in place of the column
names in the SELECT line.

SQL Query:

SELECT *
FROM Faculty

WHERE department = ‘CSC’;

Result:

facId name department rank

F105 Tanaka CSC Instructor
F221 Smith CSC Professor

Users who access a relational database through a host language are usually
advised to avoid using the asterisk notation. The danger is that an addi-
tional column might be added to a table after a program was written. The
program will then retrieve the value of that new column with each record
and will not have a matching program variable for the value, causing a loss
of correspondence between database variables and program variables. It is
safer to write the query as:

SELECT facId, name, department, rank

FROM Faculty

WHERE department = ‘CSC’;

■ Example 3. Retrieval without Condition, Use of “Distinct,” Use of
Qualified Names

Question: Get the course number of all courses in which students
are enrolled.

Solution: We go to the Enroll table rather than the Class table,
because it is possible there is a Class record for a planned class in
which no one is enrolled. From the Enroll table, we could ask
for a list of all the classNumber values, as follows.

SQL Query:

SELECT classNumber

FROM Enroll;

302 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 302

Result:
classNumber

ART103A
CSC201A
CSC201A
ART103A
ART103A
MTHlOlB
HST205A
MTH103C
MTH103C

Since we did not need a predicate, we did not use the WHERE line. Notice
that there are several duplicates in our result; it is a multi-set, not a true
relation. Unlike the relational algebra PROJECT, the SQL SELECT does
not eliminate duplicates when it “projects” over columns. To eliminate the
duplicates, we need to use the DISTINCT option in the SELECT line. If we
write,

SELECT DISTINCT classNumber
FROM Enroll;

The result would be:

classNumber

ART103A
CSC201A
MTH101B
HST205A
MTH103C

In any retrieval, especially if there is a possibility of confusion because
the same column name appears on two different tables, specify
tablename.colname. In this example, we could have written:

SELECT DISTINCT Enroll.classNumber
FROM
Enroll;

Here, it is not necessary to use the qualified name, since the FROM line
tells the system to use the Enroll table, and column names are always
unique within a table. However, it is never wrong to use a qualified name,

6.4 Manipulating the Database: SQL DML 303

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 303

and it is sometimes necessary to do so when two or more tables appear in
the FROM line.

■ Example 4: Retrieving an Entire Table

Question: Get all information about all students.

Solution: Because we want all columns of the Student table, we
use the asterisk notation. Because we want all the records in the
table, we omit the WHERE line.

SQL Query:

SELECT *
FROM Student;

Result: The result is the entire Student table.

■ Example 5. Use of “ORDER BY” and AS

Question: Get names and IDs of all Faculty members, arranged
in alphabetical order by name. Call the resulting columns Faculty-
Name and FacultyNumber.

Solution: The ORDER BY option in the SQL SELECT allows us to
order the retrieved records in ascending (ASC—the default) or
descending (DESC) order on any field or combination of fields,
regardless of whether that field appears in the results. If we order
by more than one field, the one named first determines major
order, the next minor order, and so on.

SQL Query:

SELECT name AS FacultyName, facId AS

FacultyNumber

FROM Faculty

ORDER BY name;

Result:

FacultyName FacultyNumber

Adams F101
Byrne F110
Smith F202
Smith F221
Tanaka F105

304 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 304

The column headings are changed to the ones specified in the AS clause.
We can rename any column or columns for display in this way. Note the
duplicate name of ‘Smith’. Since we did not specify minor order, the sys-
tem will arrange these two rows in any order it chooses. We could break
the “tie” by giving a minor order, as follows:

SELECT name AS FacultyName, facId AS

FacultyNumber

FROM Faculty

ORDER BY name, department;

Now the Smith records will be reversed, since F221 is assigned to CSC,
which is alphabetically before History. Note also that the field that deter-
mines ordering need not be one of the ones displayed.

■ Example 6. Use of Multiple Conditions

Question: Get names of all math majors who have more than 30
credits.

Solution: From the Student table, we choose those rows where
the major is ‘Math’ and the number of credits is greater than 30.
We express these two conditions by connecting them with ‘AND.’
We display only the lastName and firstName.

SQL Query:

SELECT lastName, firstName

FROM Student

WHERE major = ‘Math’
AND credits > 30;

Result:

lastName firstName

Jones Mary
Chin Ann

The predicate can be as complex as necessary by using the standard com-
parison operators =, <>, <, <=, >, >= and the standard logical operators
AND, OR and NOT, with parentheses, if needed or desired, to show order
of evaluation.

6.4 Manipulating the Database: SQL DML 305

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 305

6.4.2 SELECT Using Multiple Tables
■ Example 7. Natural Join

Question: Find IDs and names of all students taking ART103A.

Solution: This question requires the use of two tables. We first
look in the Enroll table for records where the classNumber is
‘ART103A.’ We then look up the Student table for records with
matching stuId values, and join those records into a new table.
From this table, we find the lastName and firstName. This is
similar to the JOIN operation in relational algebra. SQL allows us
to do a natural join, as described in Section 4.6.2, by naming the
tables involved and expressing in the predicate the condition that
the records should match on the common field.

SQL Query:

SELECT Enroll.stuId, lastName, firstName

FROM Student, Enroll

WHERE classNumber = ‘ART103A’
AND Enroll.stuId = Student.stuId;

Result:

stuId lastName firstName

Sl00l Smith Tom
Sl0l0 Burns Edward
S1002 Chin Ann

Notice that we used the qualified name for stuId in the SELECT line. We
could have written Student.stuId instead of Enroll.stuId, but we
needed to use one of the table names, because stuId appears on both of
the tables in the FROM line. We did not need to use the qualified name for
classNumber because it does not appear on the Student table. The fact
that it appears on the Class table is irrelevant, as that table is not men-
tioned in the FROM line. Of course, we had to write both qualified names
for stuId in the WHERE line.

Why is the condition “Enroll.stuId=Student.stuId” necessary? The
answer is that it is essential. When a relational database system performs a join,
it acts as if it first forms a Cartesian product, as described in Section 4.6.2, so an
intermediate table containing the combinations of all records from the
Student table with the records of the Enroll table is (theoretically)

306 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 306

formed. Even if the system restricts itself to records in Enroll that satisfy
the condition “classNumber=‘ART103A’ ”, the intermediate table num-
bers 6*3 or18 records. For example, one of those intermediate records is:

S1015 Jones Mary Math 42 ART103A S1001 A

We are not interested in this record, since this student is not one of the peo-
ple in the ART103A class. Therefore, we add the condition that the stuId
values must be equal. This reduces the intermediate table to three records.

■ Example 8. Natural Join with Ordering

Question: Find stuId and grade of all students taking any
course taught by the Faculty member whose facId is F110.
Arrange in order by stuId.

Solution: We need to look at the Class table to find the class-
Number of all courses taught by F110. We then look at the Enroll
table for records with matching classNumber values, and get the
join of the tables. From this we find the corresponding stuId and
grade. Because we are using two tables, we will write this as a join.

SQL Query:

SELECT stuId,grade

FROM Class,Enroll

WHERE facId = ‘F110’ AND Class.classNumber
= Enroll.classNumber

ORDER BY stuId ASC;

Result:

stuId grade

S1002 B
S1010
S1020 A

■ Example 9. Natural Join of Three Tables

Question: Find course numbers and the names and majors of all
students enrolled in the courses taught by Faculty member F110.

Solution: As in the previous example, we need to start at the
Class table to find the classNumber of all courses taught by
F110. We then compare these with classNumber values in the
Enroll table to find the stuId values of all students in those

6.4 Manipulating the Database: SQL DML 307

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 307

courses. Then we look at the Student table to find the names and
majors of all the students enrolled in them.

SQL Query

SELECT Enroll.classNumber, lastName,

firstName, major

FROM Class, Enroll, Student

WHERE facId = ‘F110’
AND Class.classNumber =
Enroll.classNumber

AND Enroll.stuId = Student.stuId;

Result:

classNumber lastName firstName major

MTH101B Rivera Jane CSC
MTH103C Burns Edward Art
MTH103C Chin Ann Math

This was a natural join of three tables, and it required two sets of common
columns. We used the condition of equality for both of the sets in the
WHERE line. You may have noticed that the order of the table names in the
FROM line corresponded to the order in which they appeared in our plan of
solution, but that is not necessary. SQL ignores the order in which the tables
are named in the FROM line. The same is true of the order in which we write
the various conditions that make up the predicate in the WHERE line. Most
sophisticated relational database management systems choose which table to
use first and which condition to check first, using an optimizer to identify the
most efficient method of accomplishing any retrieval before choosing a plan.

■ Example 10. Use of Aliases

Question: Get a list of all courses that meet in the same room, with
their schedules and room numbers.

Solution: This requires comparing the Class table with itself, and
it would be useful if there were two copies of the table so we could
do a natural join. We can pretend that there are two copies of a
table by giving it two “aliases,” for example, COPY and COPY2,
and then treating these names as if they were the names of two
distinct tables. We introduce the “aliases” in the FROM line by
writing them immediately after the real table names. Then we
have the aliases available for use in the other lines of the query.

308 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 308

SQL Query:

SELECT COPYl.classNumber, COPYl.schedule, COPYl.room,
COPY2.classNumber, COPY2.schedule
FROM Class COPYl, Class COPY2
WHERE COPYl.room = COPY2.room

AND COPYl.classNumber > COPY2.classNumber ;

Result:

COPYl.classNumber COPYl.schedule COPYl.room COPY2.classNumber COPY2.schedule

ART103A MWF9 H221 HST205A MWF11
CSC201A TUTHF10 M110 CSC203A MTHF12
MTH101B MTUTH9 H225 MTH103C MWF11

6.4 Manipulating the Database: SQL DML 309

Notice we had to use the qualified names in the SELECT line even before
we introduced the “aliases.” This is necessary because every column in
the Class table now appears twice, once in each copy. We added the
second condition “COPYl.classNumber < COPY2.C0URSE#” to keep
every course from being included, since every course obviously satisfies
the requirement that it meets in the same room as itself. It also keeps
records with the two courses reversed from appearing. For example,
because we have,

ART103A MWF9 H221 HST205A MWF11

we do not need the record

HST205A MWF11 H221 ART103A MWF9

Incidentally, we can introduce aliases in any SELECT, even when they are
not required.

■ Example 11. Join without Equality Condition

Question: Find all combinations of students and Faculty where
the student’s major is different from the Faculty member’s
department.

Solution: This unusual request is to illustrate a join in which the
condition is not an equality on a common field. In this case, the
fields we are examining, major and department, do not even
have the same name. However, we can compare them since they
have the same domain. Since we are not told which columns to
show in the result, we use our judgment.

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 309

SQL Query:

SELECT stuId, lastName, firstName, major, facId,

name, department

FROM Student, Faculty

WHERE Student.major <> Faculty.department;

Result:

stuId lastName firstName major facId name department

S1001 Smith Tom History F101 Adams Art
S1001 Smith Tom History F105 Tanaka CS
S1001 Smith Tom History F110 Byrne Math
S1001 Smith Tom History F221 Smith CS
S1010 Burns Edward Art F202 Smith History
...
...
...
S1013 McCarthy Owen Math F221 Smith CS

As in relational algebra, a join can be done on any two tables by simply
forming the Cartesian product. Although we usually want the natural join
as in our previous examples, we might use any type of predicate as the
condition for the join. If we want to compare two columns, however, they
must have the same domains. Notice that we used qualified names in the
WHERE line. This was not really necessary, because each column name
was unique, but we did so to make the condition easier to follow.

■ Example 12. Using a Subquery with Equality

Question: Find the numbers of all the courses taught by Byrne of
the math department.

Solution: We already know how to do this by using a natural join,
but there is another way of finding the solution. Instead of imag-
ining a join from which we choose records with the same facId,
we could visualize this as two separate queries. For the first one,
we would go to the Faculty table and find the record with name
of Byrne and department of Math. We could make a note of the
corresponding facId. Then we could take the result of that
query, namely Fll0, and search the Class table for records with
that value in facId. Once we found them, we would display the
classNumber. SQL allows us to sequence these queries so that
the result of the first can be used in the second, shown as follows:

310 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 310

SQL Query:

SELECT classNumber

FROM Class

WHERE facId =
(SELECT facId

FROM Faculty

WHERE name = ‘Byrne’
AND department = ‘Math’);

Result:

classNumber

MTH101B
MTH103C

Note that this result could have been produced by the following SQL
query, using a join:

SELECT classNumber

FROM Class, Faculty

WHERE name = ‘Byrne’ AND department = ‘Math’
AND Class.facId = Faculty.facId;

A subquery can be used in place of a join, provided the result to be displayed
is contained in a single table and the data retrieved from the subquery con-
sists of only one column. When you write a subquery involving two tables,
you name only one table in each SELECT. The query to be done first, the
subquery, is the one in parentheses, following the first WHERE line. The
main query is performed using the result of the subquery. Normally you
want the value of some field in the table mentioned in the main query to
match the value of some field from the table in the subquery. In this exam-
ple, we knew we would get only one value from the subquery, since facId is
the key of Faculty, so a unique value would be produced. Therefore, we
were able to use equality as the operator. However, conditions other than
equality can be used. Any single comparison operator can be used in a sub-
query from which you know a single value will be produced. Since the sub-
query is performed first, the SELECT . . . FROM . . . WHERE of the
subquery is actually replaced by the value retrieved, so the main query is
changed to the following:

SELECT classNumber

FROM Class

WHERE facId = (‘F110’);

6.4 Manipulating the Database: SQL DML 311

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 311

■ Example 13. Subquery Using ‘IN’

Question: Find the names and IDs of all Faculty members who
teach a class in Room H221.

Solution: We need two tables, Class and Faculty, to answer this
question. We also see that the names and IDs both appear on the
Faculty table, so we have a choice of a join or a subquery. If we
use a subquery, we begin with the Class table to find facId val-
ues for any courses that meet in Room H221. We find two such
entries, so we make a note of those values. Then we go to the
Faculty table and compare the facId value of each record on
that table with the two ID values from Class, and display the
corresponding facId and name.

SQL Query:

SELECT name, facId

FROM Faculty

WHERE facId IN
(SELECT facId

FROM Class

WHERE room = ‘H221’);

Result:

name facId

Adams F10l
Smith F202

In the WHERE line of the main query we used IN, rather than =, because
the result of the subquery is a set of values rather than a single value. We
are saying we want the facId in Faculty to match any member of the
set of values we obtain from the subquery. When the subquery is replaced
by the values retrieved, the main query becomes:

SELECT name, facId

FROM Faculty

WHERE FAClD IN (‘F101’,‘F202’);

The IN is a more general form of subquery than the comparison operator,
which is restricted to the case where a single value is produced. We can
also use the negative form ‘NOT IN’, which will evaluate to true if the
record has a field value which is not in the set of values retrieved by the
subquery.

312 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 312

■ Example 14. Nested Subqueries

Question: Get an alphabetical list of names and IDs of all students
in any class taught by F110.

Solution: We need three tables, Student, Enroll, and Class,
to answer this question. However, the values to be displayed appear
on one table, Student, so we can use a subquery. First we check the
Class table to find the classNumber of all courses taught by
F110. We find two values, MTH101B and MTH103C. Next we go to
the Enroll table to find the stuId of all students in either of these
courses. We find three values, S1020, S1010, and S1002. We now
look at the Student table to find the records with matching stuId
values, and display the stuId, lastName, and firstName, in
alphabetical order by name.

SQL Query:

SELECT lastName, firstName, stuId

FROM Student

WHERE stuId IN
(SELECT stuId

FROM Enroll

WHERE classNumber IN
(SELECT classNumber

FROM Class

WHERE facId = ‘F110’))
ORDER BY lastName, firstName ASC;

Result:

lastName firstName stuId

Burns Edward Sl0l0
Chin Ann S1002
Rivera Jane S1020

In execution, the most deeply nested SELECT is done first, and it is
replaced by the values retrieved, so we have:

SELECT lastName, firstName, stuId

FROM Student

WHERE stuId IN
(SELECT stuId

FROM Enroll

6.4 Manipulating the Database: SQL DML 313

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 313

WHERE classNumber IN
(‘MTH10lB’, ‘MTH103C’))

ORDER BY lastName, firstName ASC;

Next the subquery on Enroll is done, and we get:

SELECT lastName, firstName, stuId

FROM Student

WHERE stuId IN
(‘S1020’, ‘Sl0l0’, ‘S1002’)

ORDER BY lastName, firstName ASC;

Finally, the main query is done, and we get the result shown earlier. Note
that the ordering refers to the final result, not to any intermediate steps.
Also note that we could have performed either part of the operation as a
natural join and the other part as a subquery, mixing both methods.

■ Example 15. Query Using EXISTS

Question: Find the names of all students enrolled in CSC201A.

Solution: We already know how to write this using a join or a sub-
query with IN. However, another way of expressing this query is
to use the existential quantifier, EXISTS, with a subquery.

SQL Query:

SELECT lastName, firstName

FROM Student

WHERE EXISTS
(SELECT *
FROM Enroll

WHERE Enroll.stuId = Student.stuId

AND classNumber = ‘CSC201A’);

Result:

lastName firstName

Rivera Jane
Chin Ann

This query could be phrased as “Find the lastName and firstName of all
students such that there exists an Enroll record containing their stuId with
a classNumber of CSC201A”. The test for inclusion is the existence of such a
record. If it exists, the “EXISTS (SELECT FROM . . .;” evaluates to true.

314 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 314

Notice we needed to use the name of the main query table (Student) in
the subquery to express the condition Student.stuId = Enroll.stuId.
In general, we avoid mentioning a table not listed in the FROM for that par-
ticular query, but it is necessary and permissible to do so in this case. This
form is called a correlated subquery, since the table in the subquery is being
compared to the table in the main query.

■ Example 16. Query Using NOT EXISTS

Question: Find the names of all students who are not enrolled in
CSC201A.

Solution: Unlike the previous example, we cannot readily express
this using a join or an IN subquery. Instead, we will use NOT
EXISTS.

SQL Query:

SELECT lastName, firstName

FROM Student

WHERE NOT EXISTS
(SELECT
FROM Enroll

WHERE Student.stuId = Enroll.stuId

AND classNumber = ‘CSC201A’);

Result:

lastName firstName

Smith Tom
Burns Edward
Jones Mary
McCarthy Owen

We could phrase this query as “Select student names from the Student
table such that there is no Enroll record containing their STUlD values
with classNumber of CSC201A.”

6.4.3 SELECT with Other Operators
■ Example 17. Query Using UNION

Question: Get IDs of all Faculty who are assigned to the history
department or who teach in Room H221.

6.4 Manipulating the Database: SQL DML 315

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 315

Solution: It is easy to write a query for either of the conditions, and we
can combine the results from the two queries by using a UNION oper-
ator. The UNION in SQL is the standard relational algebra operator for
set union, and works in the expected way, eliminating duplicates.

SQL Query:

SELECT facId

FROM Faculty

WHERE department = ‘History’
UNION
SELECT facId

FROM Class

WHERE room =‘H221’;

Result:

facId

F115
F101

■ Example 18. Using Functions

Question: Find the total number of students enrolled in ART103A.

Solution: Although this is a simple question, we are unable to
express it as an SQL query at the moment, because we have not
yet seen any way to operate on collections of rows or columns. We
need some functions to do so. SQL has five built-in functions:
COUNT, SUM, AVG, MAX, and MIN. We will use COUNT, which
returns the number of values in a column.

SQL Query:

SELECT COUNT (DISTINCT stuId)
FROM Enroll

WHERE classNumber = ‘ART103A’;

Result:

3

The built-in functions operate on a single column of a table. Each of them
eliminates null values first, and operates only on the remaining non-null
values. The functions return a single value, defined as follows:

COUNT returns the number of values in the column
SUM returns the sum of the values in the column

316 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 316

AVG returns the mean of the values in the column
MAX returns the largest value in the column
MIN returns the smallest value in the column.

COUNT, MAX, and MIN apply to both numeric and nonnumeric fields,
but SUM and AVG can be used on numeric fields only. The collating
sequence is used to determine order of nonnumeric data. If we want to
eliminate duplicate values before starting, we use the word DISTINCT
before the column name in the SELECT line. COUNT(*) is a special use
of the COUNT. Its purpose is to count all the rows of a table, regardless of
whether null values or duplicate values occur. Except for COUNT(*). we
must always use DISTINCT with the COUNT function, as we did in the
above example. If we use DISTINCT with MAX or MIN it will have no
effect, because the largest or smallest value remains the same even if two
tuples share it. However, DISTINCT usually has an effect on the result of
SUM or AVG, so the user should understand whether or not duplicates
should be included in computing these. Function references appear in the
SELECT line of a query or a subquery.

Additional Function Examples:

Example (a) Find the number of departments that have Faculty in them.
Because we do not wish to count a department more than once, we use
DISTINCT here.

SELECT COUNT(DISTINCT department)
FROM Faculty;

Example (b) Find the average number of credits students have. We do not
want to use DISTINCT here, because if two students have the same num-
ber of credits, both should be counted in the average.

SELECT AVG(credits)
FROM Student;

Example (c) Find the student with the largest number of credits. Because
we want the student’s credits to equal the maximum, we need to find that
maximum first, so we use a subquery to find it.

SELECT stuId, lastName, firstName

FROM Student
WHERE credits =

(SELECT MAX(credits)
FROM Student);

6.4 Manipulating the Database: SQL DML 317

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 317

Example (d) Find the ID of the student(s) with the highest grade in any
course. Because we want the highest grade, it might appear that we should
use the MAX function here. A closer look at the table reveals that the
grades are letters A, B, C, etc. For this scale, the best grade is the one that is
earliest in the alphabet, so we actually want MIN. If the grades were
numeric, we would have wanted MAX.

SELECT stuId

FROM Enroll

WHERE grade =
(SELECT MIN(grade)
FROM Enroll);

Example (e) Find names and IDs of students who have less than the aver-
age number of credits.

SELECT lastName, firstName, stuId

FROM Student

WHERE credits <
(SELECT AVG(credits)
FROM Student);

■ Example 19. Using an Expression and a String Constant

Question: Assuming each course is three credits list, for each stu-
dent, the number of courses he or she has completed.

Solution: We can calculate the number of courses by dividing the
number of credits by three. We can use the expression credits/3
in the SELECT to display the number of courses. Since we have no
such column name, we will use a string constant as a label. String
constants that appear in the SELECT line are simply printed in
the result.

SQL Query:

SELECT stuId, ‘Number of courses =’, credits/3
FROM Student;

Result:

stuId

S1001 Number of courses = 30
S1010 Number of courses = 21
S1015 Number of courses = 14

318 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 318

S1002 Number of courses = 12
S1020 Number of courses = 5
S1013 Number of courses = 3

By combining constants, column names, arithmetic operators, built-in
functions, and parentheses, the user can customize retrievals.

■ Example 20. Use of GROUP BY

Question: For each course, show the number of students enrolled.

Solution: We want to use the COUNT function, but need to apply
it to each course individually. The GROUP BY allows us to put
together all the records with a single value in the specified field.
Then we can apply any function to any field in each group, pro-
vided the result is a single value for the group.

SQL Query:

SELECT classNumber, COUNT(*)
FROM Enroll

GROUP BY classNumber;

Result:

classNumber

ART103A 3
CSC201A 2
MTH101B 1
HST205A 1
MTH103C 2

Note that we could have used COUNT(DISTINCT stuId) in place of
COUNT(*) in this query.

■ Example 21. Use of HAVING

Problem: Find all courses in which fewer than three students are
enrolled.

Solution: This is a question about a characteristic of the groups
formed in the previous example. HAVING is used to determine
which groups have some quality, just as WHERE is used with
tuples to determine which records have some quality. You are not
permitted to use HAVING without a GROUP BY, and the predi-
cate in the HAVING line must have a single value for each group.

6.4 Manipulating the Database: SQL DML 319

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 319

SQL Query:

SELECT classNumber

FROM Enroll

GROUP BY classNumber

HAVING COUNT(*) < 3 ;

Result:

classNumber

CSC201A
MTH101B
HST205A
MTH103C

■ Example 22. Use of LIKE

Problem: Get details of all MTH courses.

Solution: We do not wish to specify the exact course numbers, but
we want the first three letters of classNumber to be MTH. SQL
allows us to use LIKE in the predicate to show a pattern string. for
character fields. Records whose specified columns match the pat-
tern will be retrieved.

SQL Query:

SELECT *
FROM Class

WHERE classNumber LIKE ‘MTH%’;

Result:

classNumber facId schedule room

MTH101B F110 MTUTH9 H225

MTH103C F110 MWF11 H225

In the pattern string, we can use the following symbols:

% The percent character stands for any sequence of charac-
ters of any length >= 0.

_ The underscore character stands for any single character.

All other characters in the pattern stand for themselves.

320 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 320

Examples:

■ classNumber LIKE ‘MTH%’ means the first three letters
must be MTH, but the rest of the string can be any characters.

■ stuId LIKE ‘S____ ’ means there must be five characters, the
first of which must be an S

■ schedule LIKE ‘%9’ means any sequence of characters, of
length at least one, with the last character a nine.

■ classNumber LlKE ‘%101%’ means a sequence of characters
of any length containing l0l. Note the 101 could be the first,
last, or only characters, as well as being somewhere in the mid-
dle of the string.

■ name NOT LIKE ‘A%’ means the name cannot begin with an A.

■ Example 23. Use of NULL

Question: Find the stuId and classNumber of all students
whose grades in that course are missing.

Solution: We can see from the Enroll table that there are two
such records. You might think they could be accessed by specifying
that the grades are not A, B, C, D, or F, but that is not the case. A null
grade is considered to have “unknown” as a value, so it is impossible
to judge whether it is equal to or not equal to another grade. If we
put the condition “WHERE grade <>‘A’ AND grade <>‘B’ AND
grade <>‘C’ AND grade <>‘D’ AND grade <>‘F’ “ we would get an
empty table back, instead of the two records we want. SQL uses
the logical expression,

columnname IS [NOT] NULL

to test for null values in a column.

SQL Query:

SELECT classNumber,stuId

FROM Enroll

WHERE grade IS NULL;

Result:

classNumber stuId

ART103A S1010
MTH103C S1010

6.4 Manipulating the Database: SQL DML 321

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 321

Notice that it is illegal to write “WHERE grade = NULL,” because a pred-
icate involving comparison operators with NULL will evaluate to
“unknown” rather than “true” or “false.” Also, the WHERE line is the only
one on which NULL can appear in a SELECT statement.

■ Example 24. Recursive Queries

SQL:1999 allows recursive queries, which are queries that execute
repeatedly until no new results are found. For example, consider a
CSCCOURSE table, as shown in Figure 6.4(a). Its structure is:

CSCCourse(courseNumber, courseTitle, credits,
prerequisiteCourseNumber)

For simplicity, we assume a course can have at most one immedi-
ate prerequisite course. The prerequisite course number functions
as a foreign key for the CSCCourse table, referring to the primary
key (course number) of a different course.

Problem: Find all of a course’s prerequisites, including prerequi-
sites of prerequisites for that course.

SQL Query:

WITH RECURSIVE
Prereqs (courseNumber, prerequisiteCourseNumber) AS

(SELECT courseNumber, prerequisiteCourseNumber
FROM CSCCourse
UNION
SELECT (COPY1.courseNumber, COPY2.prerequisiteCourseNumber
FROM Prereqs COPY1, CSCCourse COPY2
WHERE COPY1.prerequisiteCourseNumber = COPY2.courseNumber);

SELECT *
FROM Prereqs
ORDER BY courseNumber, prerequisiteCourseNumber;

This query will display each course number, along with all of that course’s
prerequisites, including the prerequisite’s prerequisite, and so on, all the
way back to the initial course in the sequence of its prerequisites. The
result is shown in Figure 6.4(b).

6.4.4 Operators for Updating: UPDATE, INSERT, DELETE

The UPDATE operator is used to change values in records already stored
in a table. It is used on one table at a time, and can change zero, one, or
many records, depending on the predicate. Its form is:

322 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 322

6.4 Manipulating the Database: SQL DML 323

courseNumber courseTitle credits prerequisiteCourseNumber

101 Intro to Computing 3

102 Computer Applications 3 101

201 Programming 1 4 101

202 Programming 2 4 201

301 Data Structures & Algorithms 3 202

310 Operating Systems 3 202

320 Database Systems 3 301

410 Advanced Operating Systems 3 310

420 Advanced Database Systems 3 320

CSCCourse FIGURE 6.4(a)
CSCCourse table to
demonstrate recursive
queries

UPDATE tablename
SET columnname = expression

[columnname = expression] . . .
[WHERE predicate];

Note that it is not necessary to specify the current value of the field,
although the present value may be used in the expression to determine the
new value. The SET statement is actually an assignment statement, and
works in the usual way.

■ Example 1. Updating a Single Field of One Record

Operation: Change the major of S1020 to Music.

SQL Command:

UPDATE Student

SET major = ‘Music’
WHERE STUlD = ‘S1020’;

■ Example 2. Updating Several Fields of One Record

Operation: Change Tanaka’s department to MIS and rank to Assistant.

SQL Command:

UPDATE Faculty

SET department = ‘MIS’
rank = ‘Assistant’

WHERE name = ‘Tanaka’;

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 323

324 CHAPTER 6 Relational Database Management Systems and SQL

courseNumber prerequisiteCourseNumber

101

102

102 101

201

201 101

202

202 101

202 201

301

301 101

301 201

301 202

310

310 101

310 201

310 202

320

320 101

320 201

320 202

320 301

410

410 101

410 201

410 202

410 310

420

420 101

420 201

420 202

420 301

420 320

PrereqsFIGURE 6.4(b)
Result of recursive query

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 324

■ Example 3. Updating Using NULL

Operation: Change the major of S1013 from Math to NULL.
To insert a null value into a field that already has an actual value,
we must use the form:

SET columnname = NULL

SQL Command:

UPDATE Student

SET major = NULL
WHERE stuId = ‘S1013’;

■ Example 4. Updating Several Records

Operation: Change grades of all students in CSC201A to A.

SQL Command:

UPDATE Enroll

SET grade = ‘A’
WHERE classNumber = ‘CSC201A’;

■ Example 5. Updating All Records.

Operation: Give all students three extra credits.

SQL Command:

UPDATE Student

SET credits = credits + 3;

Notice we did not need the WHERE line, because all records were to be
updated.

■ Example 6. Updating with a Subquery

Operation: Change the room to B220 for all courses taught by
Tanaka.

SQL Command:

UPDATE Class

SET room = ‘B220’
WHERE facId =

(SELECT facId

FROM Faculty

WHERE name = ‘Tanaka’);

6.4 Manipulating the Database: SQL DML 325

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 325

The INSERT operator is used to put new records into a table.
Normally, it is not used to load an entire table, because the data-
base management system usually has a load utility to handle that
task. However, the INSERT is useful for adding one or a few
records to a table. Its form is:

INSERT
INTO tablename [(colname [,colname]. . .)]
VALUES (constant [,constant] . . .);

■ Example 1. Inserting a Single Record, with All Fields Specified

Operation: Insert a new Faculty record with ID of F330, name of
Jones, department of CSC and rank of Instructor.

SQL Command:

INSERT
INTO Faculty (facId, name, department, rank)

VALUES (‘F330’, ‘Jones’, ‘CSC’, ‘Instructor’);

■ Example 2. Inserting a Single Record, without Specifying Fields

Operation: Insert a new student record with ID of S1030, name of
Alice Hunt, major of art, and 12 credits.

SQL Query:

INSERT
INTO Student

VALUES (‘S1030’, ‘Hunt’, ‘Alice’, ‘Art’, 12);

Notice it was not necessary to specify field names, because the system
assumes we mean all the fields in the table. We could have done the same
for the previous example.

■ Example 3. Inserting a Record with Null Value in a Field

Operation: Insert a new student record with ID of S1031, name of
Maria Bono, zero credits, and no major.

SQL Command:

INSERT
INTO Student (lastName, firstName, stuId,

credits)

VALUES (‘Bono’, ‘Maria’, ‘S1031’, 0);

326 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 326

Notice we rearranged the field names, but there is no confusion because it
is understood that the order of values matches the order of fields named
in the INTO, regardless of their order in the table. Also notice the zero is
an actual value for credits, not a null value. major will be set to null,
since we excluded it from the field list in the INTO line.

■ Example 4. Inserting Multiple Records

Operation: Create and fill a new table that shows each course and
the number of students enrolled in it.

SQL Command:

CREATE TABLE Enrollment
(classNumber CHAR(7) NOT NULL,
Students SMALLINT);

INSERT
INTO Enrollment (classNumber, Students)

SELECT classNumber, COUNT(*)
FROM Enroll

GROUP BY classNumber;

Here, we created a new table, Enrollment, and filled it by taking data
from an existing table, Enroll. If Enroll is as it appears in Figure 6.3,
Enrollment now looks like this:

Enrollment classNumber Students

ART103A 3
CSC201A 2
MTH101B 1
HST205A 1
MTH103C 2

The Enrollment table is now available for the user to manipulate, just as
any other table would be. It can be updated as needed, but it will not be
updated automatically when the Enroll table is updated.

The DELETE is used to erase records. The number of records deleted may
be zero, one, or many, depending on how many satisfy the predicate. The
form of this command is:

DELETE
FROM tablename
WHERE predicate;

6.4 Manipulating the Database: SQL DML 327

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 327

■ Example 1. Deleting a Single Record

Operation: Erase the record of student S1020.

SQL Command:

DELETE
FROM Student

WHERE stuId = ‘S1020’;

■ Example 2. Deleting Several Records

Operation: Erase all enrollment records for student S1020.

SQL Command:

DELETE
FROM Enroll

WHERE stuId = ‘S1020’;

■ Example 3. Deleting All Records from a Table

Operation: Erase all the class records.

If we delete class records and allow their corresponding Enroll records to
remain, we would lose referential integrity, because the Enroll records
would then refer to classes that no longer exist. However, if we have cre-
ated the tables using Oracle and the commands shown in Figure 6.2, the
delete command will not work on the Class table unless we first delete
the Enroll records for any students registered in the class, because we
wrote,

CONSTRAINT Enroll_classNumber_fk FOREIGN KEY (classNumber)
REFERENCES Class (classNumber)

for the Enroll table. However, assuming that we have deleted the Enroll
records, then we can delete Class records.

SQL Command:

DELETE
FROM Class;

This would remove all records from the Class table, but its structure
would remain, so we could add new records to it at any time.

■ Example 4. DELETE with a Subquery

Operation: Erase all enrollment records for Owen McCarthy.

328 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 328

SQL Command:

DELETE
FROM Enroll

WHERE stuId =
(SELECT stuId

FROM Student

WHERE lastName= ‘Mc Carthy’
AND firstName = ‘Owen’);

Because there were no such records, this statement will have no effect on
Enroll.

6.5 Active Databases

The DBMS has more powerful means of insuring integrity in a database
then the column and table constraints discussed in Section 6.3. An active
database is one in which the DBMS monitors the contents in order to pre-
vent illegal states from occurring, using constraints and triggers.

6.5.1 Enabling and Disabling Constraints

The column and table constraints described in Section 6.3 are identified
when the table is created, and are checked whenever a change is made to
the database, to ensure that the new state is a valid one. Changes that could
result in invalid states include insertion, deletion, and updating of records.
Therefore, the constraints are checked by the DBMS whenever one of these
operations is performed, usually after each SQL INSERT, DELETE, or
UPDATE statement. This is called the IMMEDIATE mode of constraint
checking, and it is the default mode. However, there are times when a
transaction or application involves several changes and the database will be
temporarily invalid while the changes are in progress—some but not all of
the changes already have been made. For example, assume we have a
Department table in our University example with a chairPerson column
in which we listed the facId of the chairperson, and we use a NOT NULL
specification for that field, and make it a foreign key, by writing:

CREATE TABLE Department (
deptName CHAR(20),
chairPerson CHAR(20) NOT NULL,
CONSTRAINT Department_deptName_pk PRIMARY KEY(deptName),
CONSTRAINT Department_facId_fk FOREIGN KEY REFERENCES Faculty (facId));

6.5 Active Databases 329

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 329

For the Faculty table definition in Figure 6.2, we already have a NOT
NULL for the department, but now we could make department a foreign
key with the new Department table as the home table, by writing:

ALTER TABLE Faculty ADD CONSTRAINT Faculty_department_fk FOREIGN KEY
REFERENCES Department(deptName);

What will happen when we try to create a new department and add the
faculty for that department to the Faculty table? We cannot insert the
department record unless we already have the chairperson’s record in the
Faculty table, but we cannot insert that record unless the department
record is already there, so each SQL INSERT statement would fail. For
such situations, SQL allows us to defer the checking until the end of the
entire transaction, using statements such as,

SET CONSTRAINT Department_facId_fk DEFERRED;

or,

SET CONSTRAINT Faculty_department_fk DEFERRED;

We can enable or disable constraints to allow such transactions to succeed,
using the statement such as:

DISABLE CONSTRAINT Department_facId_fk;

At the end of the transaction, we should write,

ENABLE CONSTRAINT Department_facId_fk;

to allow enforcement again. Although not recommended, Oracle allows us
to write,

DISABLE ALL CONSTRAINTS;

which suspends all integrity checking until a corresponding,

ENABLE ALL CONSTRAINTS;

command is encountered. These statements can be used both interactively
and within applications.

6.5.2 SQL Triggers

Like constraints, triggers allow the DBMS to monitor the database. However,
they are more flexible than constraints, apply to a broader range of situations,
and allow a greater variety of actions. A trigger consists of three parts:

■ An event, which is normally some change made to the database

330 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 330

■ A condition, which is a logical predicate that evaluates to true or
false

■ An action, which is some procedure that is done when the event
occurs and the condition evaluates to true, also called firing the trigger

A trigger has access to the inserted, deleted, or updated data that caused it
to fire (i.e., to be activated or raised), and the data values can be used in
the code both for the condition and for the action. The prefix :OLD is
used to refer to the values in a tuple just deleted or to the values replaced
in an update. The prefix :NEW is used to refer to the values in a tuple just
inserted or to the new values in an update. Triggers can be fired either
before or after the execution of the insert, delete or update operation. We
can also specify whether the trigger is fired just once for each triggering
statement, or for each row that is changed by the statement. (Recall that,
for example, an update statement may change many rows.) In Oracle, you
specify the SQL command (INSERT, DELETE, or UPDATE) that is the
event; the table involved; the trigger level (ROW or STATEMENT); the
timing (BEFORE or AFTER); and the action to be performed, which can
be written as one or more SQL commands in PL/SQL. Section 6.7 dis-
cusses PL/SQL in more detail. The Oracle trigger syntax has the form:

CREATE OR REPLACE TRIGGER trigger_name
[BEFORE/AFTER] [INSERT/UPDATE/DELETE] ON table_name
[FOR EACH ROW] [WHEN condition]
BEGIN

trigger body
END;

For example, add to the Class table two additional attributes,
currentEnroll, which shows the number of students actually enrolled
in each class, and maxEnroll, which is the maximum number of students
allowed to enroll. The new table, RevClass, is shown in Figure 6.5, along
with a new version of the Enroll table, RevEnroll. Since currentEnroll
is a derived attribute, dependent on the RevEnroll table, its value should
be updated when there are relevant changes made to RevEnroll.
Changes that affect currentEnroll are:

1. A student enrolls in a class

2. A student drops a class

3. A student switches from one class to another

6.5 Active Databases 331

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 331

In an active database, there should be triggers for each of these changes.
For change (1), we should increment the value of currentEnroll by one.
We can refer to the classNumber of the new RevEnroll record by using
the prefix :NEW. The corresponding trigger is shown in Figure 6.5(b) Note
that we did not use the WHEN because we always want to make this
change after a new enrollment record is inserted, so no condition was
needed. For change (2), we need to decrement the value of currentEnroll
by one, and we use the prefix :OLD to refer to the revEnroll record
being deleted. The trigger is shown in Figure 6.5(c). Change (3) could be
treated as a drop followed by an enrollment, but instead we will write a
trigger for an update to demonstrate an action with two parts, as shown
in Figure 6.5(d).

While these triggers are sufficient if there is room in a class, we also need
to consider what should happen if the class is already fully enrolled. The
value of maxEnroll should have been examined before we allowed a stu-
dent to enroll in the class, so we need to check that value before we do
change (1) or change (3). Assume that if a change would cause a class to
be overenrolled, we call a procedure called RequestClosedCoursePermis-
sion that takes as parameters the student’s ID, the class number, the cur-
rent enrollment, and maximum enrollment. The action should be taken
before we make the change. The trigger is shown in Figure 6.5(e).

Triggers are automatically enabled when they are created. They can be dis-
abled by the statement:

ALTER TRIGGER <trigger-name> DISABLE;

After disabling, they can enabled again by the statement:

ALTER TRIGGER <trigger-name> ENABLE;

They can be dropped by the statement:

DROP TRIGGER <trigger-name>;

Oracle provides an INSTEAD OF form that is especially useful when a
user tries to update the database through a view. This form specifies an
action to be performed instead of the insert, delete, or update that the user
requested. It will be discussed in Section 6.8. Triggers can also be used to
provide an audit trail for a table, recording all changes, the time they were
made, and the identity of the user who made them, an application that
will be discussed in Section 9.6.

332 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 332

6.5 Active Databases 333

classNumber facId schedule room currentEnroll maxEnroll

ART103A F101 MWF9 H221 3 25

CSC201A F105 TuThF10 M110 2 20

CSC203A F105 MThF12 M110 0 20

HST205A F115 MWF11 H221 1 35

MTH101B F110 MTuTh9 H225 1 25

MTH103C F110 MWF11 H225 2 25

RevClass

FIGURE 6.5(a)
Tables for Triggers

stuId classNumber grade

S1001 ART103A A

S1001 HST205A C

S1002 ART103A D

S1002 CSC201A F

S1002 MTH103C B

S1010 ART103A

S1010 MTH103C

S1020 CSC201A B

S1020 MTH101B A

RevEnroll

CREATE TRIGGER ADDENROLL
AFTER INSERT ON RevEnroll
FOR EACH ROW

UPDATE RevClass
SET currentEnroll = currentEnroll +1
WHERE RevClass.classNumber = :NEW.classNumber;

Figure 6.5(b)
Trigger for Student
Enrolling in a Class

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 333

334 CHAPTER 6 Relational Database Management Systems and SQL

CREATE TRIGGER DROPENROLL
AFTER DELETE ON RevEnroll
FOR EACH ROW

UPDATE RevClass
SET currentEnroll = currentEnroll –1
WHERE RevClass.classNumber = OLD.classNumber;

Figure 6.5(c)
Trigger for Student Drop-
ping a Class

CREATE TRIGGER SWITCHENROLL
AFTER UPDATE OF classNumnber ON RevEnroll
FOR EACH ROW

BEGIN
UPDATE RevClass
SET currentEnroll = currentEnroll + 1
WHERE RevClass.classNumber = :NEW.classNumber;
UPDATE RevClass
SET currentEnroll = currentEnroll –1
WHERE RevClass.classNumber = :OLD.classNumber;

END;

Figure 6.5(d)
Trigger for Student
Changing Classes

CREATE TRIGGER ENROLL_REQUEST
BEFORE INSERT OR UPDATE OF classNumber ON RevEnroll
FOR EACH ROW
WHEN

((SELECT maxEnroll
FROM RevClass
WHERE RevClass.classNumber = :NEW.classNumber)

<
(SELECT currentEnroll + 1
FROM RevClass
WHERE RevClass.classNumber = :NEW.classNumber))

RequestClosedCoursePermission(:NEWstuId, :NEW.classNumber, RevClass.currentEnroll,
RevClass.maxEnroll);

Figure 6.5(e)
Trigger for Checking for
Over-enrollment Before
Enrolling Student

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 334

6.6 Using COMMIT and ROLLBACK Statements

Any changes made to a database using SQL commands are not permanent
until the user writes a COMMIT statement. Discussed in Chapter 10, an
SQL transaction ends when either a COMMIT statement or a ROLLBACK
statement is encountered. The COMMIT makes permanent the changes
made since the beginning of the current transaction, which is either
the beginning of the session or the time since the last COMMIT or
ROLLBACK. The ROLLBACK undoes changes made by the current trans-
action. It is wise to write COMMIT often to save changes as you work.

6.7 SQL Programming

For the interactive SQL statements shown so far, we assumed that there
was a user interface that provided an environment to accept, interpret, and
execute the SQL commands directly. An example is Oracle’s SQLPlus facil-
ity. Though some users can interact with the database this way, most data-
base access is through programs.

6.7.1 Embedded SQL

One way that SQL can be used is to embed it in programs written in a
general-purpose programming language such as C, C++, Java, COBOL,
Ada, Fortran, Pascal, PL/1, or M, referred to as the host language. Any
interactive SQL command, such as the ones we have discussed, can be
used in an application program, with minor modifications. The program-
mer writes the source code using both host language statements, which
provide the control structures, and SQL statements, which manage the
database access. Executable SQL statements are preceded by a prefix such
as the keyword EXEC SQL, and end with a terminator such as a semi-
colon. An executable SQL statement can appear wherever an executable
host language statement can appear. The DBMS provides a precompiler,
which scans the entire program and strips out the SQL statements, identi-
fied by the prefix. The SQL is compiled separately into some type of access
module, and the SQL statements are replaced, usually by simple function
calls in the host language. The resulting host language program can then
be compiled as usual. Figure 6.6 illustrates this process.

The data exchange between the application program and the database is
accomplished through the host-language program variables, for which

6.7 SQL Programming 335

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 335

attributes of database records provide values or from which they receive
their values. These shared variables are declared within the program in an
SQL declaration section such as the following:

EXEC SQL BEGIN DECLARE SECTION;
char stuNumber[5];
char stuLastName[15];
char stuFirstName[12];
char stuMajor[10];
int stuCredits;
char SQLSTATE[6];
EXEC SQL END DECLARE SECTION;

The first five program variables declared here are designed to match the
attributes of the Student table. They can be used to receive values from
Student tuples, or to supply values to tuples. Because the data types of the
host language might not match those of the database attributes exactly, a
type cast operation can be used to pass appropriate values between pro-
gram variables and database attributes. SQL:1999 provides language bind-
ings that specify the correspondence between SQL data types and the data
types of each host language.

The last variable declared, SQLSTATE, is a character array that is used
for communicating error conditions to the program. When an SQL
library function is called, a value is placed in SQLSTATE indicating

336 CHAPTER 6 Relational Database Management Systems and SQL

Host language + SQL statements
Source code:

Precompiler

Host language + DBMS Function
Calls

Object code

Host-language
Complier

FIGURE 6.6
Processing Embedded SQL
Programs

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 336

which error condition may have occurred when the database was
accessed. A value of ‘00000’ indicates no error, while a value ‘02000’ indi-
cates that the SQL statement executed correctly but no tuple was found
for a query. The value of SQLSTATE can be tested in host language con-
trol statements. For example, some processing may be performed if the
value is ‘00000’, or a loop may be written to read a record until the value
of ‘02000’ is returned.

Embedded SQL SELECT statements that operate on a single row of a
table are very similar to the interactive statements we saw earlier. For
example, a SELECT statement that retrieves a single tuple is modified
for the embedded case by identifying the shared variables in an INTO
line. Note that when shared variables are referred to within an SQL
statement, they are preceded by colons to distinguish them from attrib-
utes, which might or might not have the same names. The following
example begins with a host-language statement assigning a value to the
host variable stuNumber. It then uses an SQL SELECT statement to
retrieve a tuple from the Student table whose stuId matches the shared
variable stuNumber (referred to as :stuNumber in the SQL statement).
It puts the tuple’s attribute values into four shared variables that were
declared previously:

stuNumber = 'S1001';
EXEC SQL SELECT Student.lastName, Student.firstName, Student.major,
Student.credits

INTO :stuLastName, :stuFirstName, :stuMajor, :stuCredits
FROM Student
WHERE Student.stuId = :stuNumber;

This segment should be followed by a host-language check of the value of
SQLSTATE.

To insert a database tuple, we can assign values to shared variables in the
host language and then use an SQL INSERT statement. The attribute val-
ues are taken from the host variables. For example, we could write:

stuNumber = 'S1050';
stuLastName = 'Lee';
stuFirstName = 'Daphne';
stuMajor = 'English';
stuCredits = 0;
EXEC SQL INSERT

INTO Student (stuId, lastName, firstName, major, credits)
VALUES(:stuNumber,:stuLastName, :stuFirstName,:stuMajor,

:stuCredits);

6.7 SQL Programming 337

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 337

We can delete any number of tuples that we can identify using the value of
a host variable:

stuNumber = 'S1015';
EXEC SQL DELETE

FROM Student
WHERE stuId = :stuNumber;

We can also update any number of tuples in a similar manner:

stuMajor = 'History';
[FOR {READ ONLY UPDATE OF attributeNames}];

For example, to create a cursor that will later be used to go through CSC
student records that we plan to retrieve only, we would write:

EXEC SQL DECLARE CSCstuCursor CURSOR FOR
SELECT stuId, lastName, firstName, major, credits
FROM student
WHERE major='CSC';

Note that this is a declaration, not an executable statement. The SQL
query is not executed yet. After declaring the cursor, we write a statement
to open it. This executes the query so that the results multi-set is created.
Opening the cursor also positions it just before the first tuple of the results
set. For this example, we write:

EXEC SQL OPEN CSCstuCursor;

To retrieve the first row of the results, we then use the FETCH command
which has the form,

EXEC SQL FETCH cursorname INTO hostvariables;

as in,

EXEC SQL FETCH CSCstuCursor INTO :stuNumber,:stuLastName,
:stuFirstName,:stuMajor,:stuCredits

The FETCH statement advances the cursor and assigns the values of the
attributes named in the SELECT statement to the corresponding shared
variables named in the INTO line. A loop controlled by the value of SQL-
STATE (e.g., WHILE (SQLSTATE = 00000)) should be created in the host
language so that additional rows are accessed. The loop also contains host
language statements to do whatever processing is needed. After all data has
been retrieved, we exit the loop, and close the cursor in a statement such as:

EXEC SQL CLOSE CSCstuCursor;

338 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 338

If we plan to update multiple rows using the cursor, we must initially
declare it to be updatable, by using a more complete declaration such as:

EXEC SQL DECLARE stuCreditsCursor CURSOR FOR
SELECT stuId, credits
FROM Student

FOR UPDATE OF credits;

We must name in both the SELECT statement and the update attribute list
any attribute that we plan to update using the cursor. Once the cursor is
open and active, we can update the tuple at which the cursor is positioned,
called the current of the cursor, by writing a command such as:

EXEC SQL UPDATE Student
SET credits = credits +3
WHERE CURRENT OF stuCreditsCursor;

Similarly, the current tuple can be deleted by a statement such as:

EXEC SQL DELETE FROM Student
WHERE CURRENT OF stuCreditCursor;

Users may wish to be able to specify the type of access they need at run
time rather than in a static fashion using compiled code of the type just
described. For example, we might want a graphical front end where the
user could enter a query that can be used to generate SQL statements
that are executed dynamically, like the interactive SQL described earlier.
Besides the version of SQL just discussed, which is classified as static,
there is a dynamic SQL, which allows the type of database access to be
specified at run time rather than at compile time. For example, the user
may be prompted to enter an SQL command that is then stored as a
host-language string. The SQL PREPARE command tells the database
management system to parse and compile the string as an SQL com-
mand, and to assign the resulting executable code to a named SQL vari-
able. An EXECUTE command is then used to run the code.
For example, in the following segment the host-language variable
userString is assigned an SQL update command, the corresponding
code is prepared and bound to the SQL identifier userCommand, and
then the code is executed.

char userString[]='UPDATE Student SET credits = 36 WHERE stuId= S1050';
EXEC SQL PREPARE userCommand FROM :userString;
EXEC SQL EXECUTE userCommand;

6.7 SQL Programming 339

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 339

6.7.2 API, ODBC, and JDBC

For embedded SQL, a precompiler supplied by the DBMS compiles the
SQL code, replacing it with function calls in the host language. A more
flexible approach is for the DBMS to provide an Application Program-
ming Interface, API, that includes a set of standard library functions for
database processing. The library functions can then be called by the appli-
cation, which is written in a general purpose language. Programmers use
these library functions in essentially the same way they use the library of
the language itself. The functions allow the application to perform stan-
dard operations such as connecting to the database, executing SQL com-
mands, presenting tuples one at a time, and so on. However, the
application would still have to use the precompiler for a particular DBMS
and be linked to the API library for that DBMS, so the same program
could not be used with another DBMS.

Open Database Connectivity (ODBC) and Java Database Connectivity
(JDBC) provide standard ways of integrating SQL code and general pur-
pose languages by providing a common interface. This standardization
allows applications to access multiple databases using different DBMSs.
The standard provides a high degree of flexibility, allowing development
of client-server applications that work with a variety of DBMSs, instead of
being limited to a particular vendor API. Most vendors provide ODBC or
JDBC drivers that conform to the standard. An application using one of
these standard interfaces can use the same code to access different data-
bases without recompilation. ODBC/JDBC architecture requires four
components—the application, driver manager, driver, and data source
(normally a database), as illustrated in Figure 6.7. The application initiates
the connection with the database, submits data requests as SQL statements
to the DBMS, retrieves the results, performs processing, and terminates
the connection, all using the standard API. A driver manager loads and
unloads drivers at the application’s request, and passes the ODBC or JDBC
calls to the selected driver. The database driver links the application to the
data source, translates the ODBC or JDBC calls to DBMS-specific calls,
and handles data translation needed because of any differences between
the DBMS’s data language and the ODBC/JDBC standard, and error-
handling differences that arise between the data source and the standard.
The data source is the database (or other source, such as a spreadsheet)
being accessed, along with its environment, consisting of its DBMS and
platform. There are different levels of conformance defined for ODBC and

340 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 340

JDBC drivers, depending on the type of relationship between the applica-
tion and the database.

6.7.3 SQL PSM

Most database management systems include an extension of SQL itself,
called Persistent Stored Modules (PSM), to allow users to write stored
procedures, called internal routines, within the database process space,
rather than externally. These facilities are used to write SQL routines that
can be saved with the database schema and invoked when needed. (In
contrast, programs written in a host language are referred to as external
routines.) Oracle’s PL/SQL, which can be accessed from within the
SQLPlus environment, is this type of facility. The SQL/PSM standard is
designed to provide complete programming language facilities, including
declarations, control structures, and assignment statements.

SQL/PSM modules include functions, procedures, and temporary rela-
tions. To declare a procedure, we write:

CREATE PROCEDURE procedure_name (parameter_list)
declarations of local variables
procedure code

Each parameter in the parameter list has three items—mode, name, and
datatype. The mode can be IN, OUT, or INOUT, depending on whether it
is an input parameter, an output parameter, or both. The name and data
type of the parameter must also be given. Next we have declarations of
local variables, if any, and the code for the procedure, which may contain

6.7 SQL Programming 341

Other
Data
Source

DatabaseDatabase

Driver DriverDriver

Driver Manager

Application FIGURE 6.7
ODBC/JDBC Architecture

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 341

SQL statements of the type we have seen previously for embedded SQL,
plus assignment statements, control statements, and error handling.

A function has a similar declaration, as follows:

CREATE FUNCTION function_name (parameter list)
RETURNS SQLdatatype

declarations of local variables
function code (must include a RETURN statement)

Functions accept only parameters with mode IN, to prevent side effects. The
only value returned should be the one specified in the RETURN statement.

Declarations have this form,

DECLARE identifier datatype;

as in,

DECLARE status VARCHAR2;
DECLARE number_of_courses NUMBER;

The SQL assignment statement, SET, permits the value of a constant or an
expression to be assigned to a variable. For example, we could write:

SET status = 'Freshman'; //However, Oracle uses := for assignment
SET number_of_courses = credits/3;

Branches have the form:

IF (condition) THEN statements;
ELSEIF (condition) statements;
. . .
ELSEIF (condition) statements;
ELSE statements;

END IF;

for example,

IF (Student.credits <30) THEN
SET status = 'Freshman';
ELSEIF (Student.credits <60) THEN

SET status = 'Sophomore';
ELSEIF (Student.credits <90) THEN

SET status = 'Junior';
ELSE SET status = 'Senior';

END IF;

342 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 342

The CASE statement can be used for selection based on the value of a
variable or expression.

CASE selector
WHEN value1 THEN statements;
WHEN value2 THEN statements;
. . .

END CASE;

Repetition is controlled by LOOP ... ENDLOOP, WHILE ... DO ... END
WHILE REPEAT, ... UNTIL ... END REPEAT, and FOR ... DO ... END
FOR structures. We can use cursors as we did for embedded SQL. For
example, we could write:

...
DECLARE CSCstuCursor CURSOR FOR

SELECT stuId, lastName, firstName, major, credits
FROM student
WHERE major= 'CSC';

OPEN CSCstuCursor;
WHILE (SQLCODE = '00000') DO

FETCH CSCstuCursor INTO stuNumber,stuLastName,stuFirstName,
stuMajor,stuCredits; statements to process these values

END WHILE;
CLOSE CSCstuCursor;

The language also provides predefined exception handlers, and allows the
user to create user-defined exceptions as well.

Once a procedure has been created, it can be executed by this command:

EXECUTE procedure_name(actual_ parameter_ list);

As with most languages, the actual parameter list consists of the values or
variables being passed to the procedure, as opposed to the formal parame-
ter list that appears in the declaration of the procedure.

A function is invoked by using its name, typically in an assignment state-
ment. For example:

SET newVal = MyFunction (val1, val2);

6.7 SQL Programming 343

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 343

6.8 Creating and Using Views

Views are an important tool for providing users with a simple, customized
environment and for hiding data. As explained in Section 6.2, a relational
view does not correspond exactly to the general external view, but is a vir-
tual table derived from one or more underlying base tables. It does not
exist in storage in the sense that the base tables do, but is created by select-
ing specified rows and columns from the base tables, and possibly per-
forming operations on them. The view is dynamically produced as the
user works with it. To make up a view, the DBA decides which attributes
the user needs to access, determines what base tables contain them, and
constructs one or more views to display in table form the values the user
should see. Views allow a dynamic external model to be created for the
user easily. The reasons for providing views rather than allowing all users
to work with base tables are as follows:

■ Views allow different users to see the data in different forms, per-
mitting an external model that differs from the conceptual model.

■ The view mechanism provides a simple authorization control
device, easily created and automatically enforced by the system.
View users are unaware of, and cannot access, certain data items.

■ Views can free users from complicated DML operations, especially
in the case where the views involve joins. The user writes a simple
SELECT statement using the view as the named table, and the sys-
tem takes care of the details of the corresponding more compli-
cated operations on the base tables to support the view.

■ If the database is restructured on the conceptual level, the view
can be used to keep the user’s model constant. For example, if the
table is split by projection and the primary key appears in each
resulting new table, the original table can always be reconstructed
when needed by defining a view that is the join of the new tables.

The following is the most common form of the command used to create a
view:

CREATE VIEW viewname
[(viewcolname [,viewcolname] . . .)]
AS SELECT colname [,colname] . . .

FROM basetablename [,basetablename] . . .
WHERE condition;

344 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 344

The view name is chosen using the same rules as the table name, and
should be unique within the database. Column names in the view can be
different from the corresponding column names in the base tables, but they
must obey the same rules of construction. If we choose to make them the
same, we need not specify them twice, so we leave out the viewcolname line.
In the AS SELECT line, we list the names of the columns from the underly-
ing base tables that we wish to include in the view. The order of these
names should correspond exactly to the viewcolnames, if those are speci-
fied. However, columns chosen from the base tables may be rearranged in
any desired manner in the view. As in the usual SELECT . . . FROM . . .
WHERE, the condition is a logical predicate that expresses some restriction
on the records to be included. A more general form of the CREATE VIEW
uses any valid subquery in place of the SELECT we have described.

■ Example 1. Choosing a Vertical and Horizontal Subset of a Table

Assume a user needs to see IDs and names of all history majors.
We can create a view for this user as follows:

CREATE VIEW HISTMAJ (StudentName,StudentId)
AS SELECT lastName, firstName,stuId

FROM Student

WHERE major = ‘History’;

Here we renamed the columns from our base table. The user of this view
need not know the actual column names.

■ Example 2. Choosing a Vertical Subset of a Table

If we would like a table of all courses with their schedules and room, we
could create this as follows:

CREATE VIEW ClassLoc

AS SELECT classNumber, schedule, room

FROM Class;

Notice we did not need a condition here, since we wanted these parts of all
Class records. This time we kept the names of the columns as they
appear in the base table.

■ Example 3. A View Using Two Tables

Assume a user needs a table containing the IDs and names of all students in
course CSC101. The virtual table can be created by choosing records in Enroll
that have classNumber of CSC101, matching the stuId of those records with

6.8 Creating and Using Views 345

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 345

the stuId of the Student records, and taking the corresponding lastName,
and firstName from Student. We could express this as a join or a subquery.

CREATE VIEW ClassList
AS SELECT Student.stuId,lastName,

firstName

FROM Enroll,Student

WHERE classNumber = ‘CSCl0l’
AND Enroll.stuId =
Student.stuId;

■ Example 4. A View of a View

We can define a view derived from a view. For example, we can ask for a
subset of the ClassLoc (virtual) table by writing:

CREATE VIEW ClassLoc2
AS SELECT classNumber, room

FROM ClassLoc;

■ Example 5. A View Using a Function

In the SELECT statement in the AS line we can include built–in functions and
GROUP BY options. For example, if we want a view of Enroll that gives
classNumber and the number of students enrolled in each class, we write:

CREATE VIEW ClassCount (classNumber, TotCount)
AS SELECT classNumber, COUNT(*)

FROM Enroll

GROUP BY classNumber;

Notice we had to supply a name for the second column of the view, since
there was none available from the base table.

■ Example 6. Operations on Views

Once a view is created, the user can write SELECT statements to retrieve
data through the view. The system takes care of mapping the user names
to the underlying base table names and column names, and performing
whatever functions are required to produce the result in the form the user
expects. Users can write SQL queries that refer to joins, ordering, group-
ing, built-in functions, and so on, of views just as if they were operating
on base tables. Since the SELECT operation does not change the underly-
ing base tables, there is no restriction on using it with views. The following
is an example of a SELECT operation on the ClassLoc view:

346 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 346

SELECT *
FROM ClassLoc

WHERE room LIKE ‘H%’;

INSERT, DELETE, and UPDATE present certain problems with views. For
example, suppose we had a view of student records such as:

StudentVwl(lastName, firstName, major, credits)

If we were permitted to insert records, any records created through this
view would actually be Student records, but would not contain stuId,
which is the key of the Student table. Since stuId would have the NOT
NULL constraint, we would have to reject any records without this field.
However, if we had the following view,

StudentVw2(stuId,lastName, firstName,credits)

we should have no problem inserting records, since we would be inserting
Student records with a null major field, which is allowable. We could
accomplish this by writing:

INSERT
INTO StudentVw2

VALUES ('S1040'. 'Levine', 'Adam', 30);

However, the system should actually insert the record into the Student
table. We can use an INSTEAD OF trigger to make sure this happens.

CREATE TRIGGER InsertStuVw2
INSTEAD OF INSERT ON StudentVw2
FOR EACH ROW

INSERT
INTO Student
VALUES (:NEW.stuId, :NEW.lastName,
:NEW.firstName, NEW. Credits);

Now let us consider inserting records into the view ClassCount, as
described earlier in Example 5. This view used the COUNT function on
groups of records in the Enroll table. Obviously, this table was meant to
be a dynamic summary of the Enroll table, rather than being a row and
column subset of that table. It would not make sense for us to permit new,

ClassCount

records to be inserted, since these do not correspond to individual rows or
columns of a base table.

6.8 Creating and Using Views 347

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 347

The problems we have identified for INSERT apply with minor changes to
UPDATE and DELETE as well. As a general rule, these three operations
can be performed on views that consist of actual rows and columns of
underlying base tables, provided the primary key is included in the view,
and no other constraints are violated. INSTEAD OF triggers can be used
to ensure that the database updates the underlying tables.

6.9 The System Catalog

The system catalog or system data dictionary can be thought of as a data-
base of information about databases. It contains, in table form, a summary of
the structure of each database as it appears at a given time. Whenever a base
table, view, index, constraint, stored module, or other item of a database
schema is created, altered, or dropped, the DBMS automatically updates its
entries in the catalog. The system also uses the catalog to check authoriza-
tions and to store information for access plans for applications. Users can
query the data dictionary using ordinary SQL SELECT commands. However,
since the data dictionary is maintained by the DBMS itself, the SQL
UPDATE, INSERT, and DELETE commands cannot be used on it.

The Oracle data dictionary contains information about all schema
objects, but access to it is provided through three different views, called
USER, ALL, and DBA. In Oracle, each user is automatically given access to
all the objects he or she creates. The USER view provides a user with
information about all the objects created by that user. Users can be given
access to objects that are created by others. The ALL view provides infor-
mation about those objects in addition to the one the user has created.
The DBA view, which provides information about all database objects, is
available to the database administrator. Each of the views is invoked by
using the appropriate term as a prefix for the object(s) named in the
FROM clause in a query. For example, if a user wants a list of the names of
all the tables he or she has created, the query is:

SELECT TABLE_NAME
FROM USER_TABLES;

Queries can be written by using the appropriate prefix (USER_, ALL_, DBA_)
in the FROM clause, followed by one of the categories CATALOG, CON-
STRAINTS, CONS_COLUMNS (columns that have constraints), DICTIO-
NARY, IND_COLUMNS (columns that have indexes), INDEXES, OBJECTS,
TAB_COLUMNS (table columns), TRIGGERS, ROLES, PROFILES,
SEQUENCES, SOURCE (source code for a module), SYS_PRIVS, USERS,

348 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 348

TABLES, TABLESPACES, VIEWS, and other objects in the schema. For each
of these categories, each of the three views (USER, ALL, DBA) has several
columns. Generally, you can assume that each category has a column for the
name of the object, which you can use to write a query such as:

SELECT VIEW_NAME
FROM USER_VIEWS;

To determine what all the available columns are, you can use the wild card
(*) in the SELECT clause. For example,

SELECT*
FROM USER_TAB_COLUMNS;

will display all the recorded information about the columns in the tables
you have created. Then you can use the view’s column names (e.g.,
COLUMN_NAME, DATA_TYPE) in a more targeted query, such as:

SELECT COLUMN_NAME, DATA_TYPE
FROM USER_TAB_COLUMNS
WHERE TABLE_NAME = 'STUDENT';

Another way to learn about the objects is to use the DESCRIBE command.
Once you know the name of an object (e.g., a table, constraint, column),
which you can obtain by one of the methods just illustrated, you can ask
for a description of it. For example, you can write,

DESCRIBE STUDENT;

to see what is known about the Student table, or,

DESCRIBE HISTMAJ;

to see what is known about the HISTMAJ view that we created in
Section 6.8. If we want to learn what information is available about con-
straints in the USER view, we would write:

DESCRIBE USER_CONSTRAINTS;

We can then write a query using the names of the columns that are dis-
played, such as:

SELECT CONSTRAINT_NAME, CONSTRAINT_TYPE, TABLE_NAME
FROM USER_CONSTRAINTS;

For information about triggers, the command,

SELECT TRIGGER_NAME, TRIGGER_EVENT, TRIGGER_TYPE
FROM USER_TRIGGERS;

provides useful information about them.

6.9 The System Catalog 349

007_33148_06_286-372_1e.qxd 1/28/04 8:01 AM Page 349

IBM’s DB2 Universal Database has a system catalog that is also kept in
the form of tables in a schema called SYSIBM, usually with restricted
access. Two views of the tables, SYSCAT and SYSSTAT, are available for
users. The SYSCAT schema has many tables, all of which are read-only.
Some of the most important ones are the following:

TABLES (TABSCHEMA, TABNAME, DEFINER, TYPE, STATUS, COLCOUNT,
KEYCOLUMNS, CHECKCOUNT,..)
COLUMNS (TABSCHEMA, TABNAME, COLNAME, COLNO, TYPENAME, LENGTH,
DEFAULT, NULLS, ...)
INDEXES (INDSCHEMA, INDNAME, DEFINER, TABSCHEMA, TABNAME, COLNAMES,
UNIQUERULE, COLCOUNT, ...)
TRIGGERS (TRIGSCHEMA, TRIGNAME, DEFINER, TABSCHEMA, TABNAME,
TRIGTIME, TRIGEVENT, ...)
VIEWS (VIEWSCHEMA, VIEWNAME, DEFINER, TEXT ...)

You can write queries for these tables using SQL, as in,

SELECT TABSCHEMA, TABNAME
FROM TABLES
WHERE DEFINER = 'JONES';

which gives the names of all the tables created by Jones.

The query,

SELECT *
FROM COLUMNS
WHERE TABNAME = 'STUDENT'
GROUP BY COLNAME;

gives all the available information about the columns of the Student table.

6.10 Chapter Summary

Oracle, IBM’s DB2, MySQL, SQL Server and other relational database
management systems use SQL, a standard relational DDL and DML. On
the conceptual level, each relation is represented by a base table. The
external level consists of views, which are created from subsets, combina-
tions, or other operations on the base tables. A base table can have
indexes, one of which can be a clustered index, defined on it. Dynamic
database definition allows the structure to be changed at any time.

SQL DDL commands CREATE TABLE and CREATE INDEX are used to
create the base tables and their indexes. Several built-in data types are
available, and users can also define new types. Constraints can be speci-
fied on the column or table level. The ALTER TABLE command allows

350 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 350

changes to existing tables, such as adding a new column, dropping a col-
umn, changing data types, or changing constraints. The RENAME TABLE
command allows the user to change a table’s name. DROP TABLE and
DROP INDEX remove tables and indexes, along with all the data in them,
from the database.

The DML commands are SELECT, UPDATE, INSERT, and DELETE. The
SELECT command has several forms, and it performs the equivalent of
the relational algebra SELECT, PROJECT, and JOIN operations. Options
include GROUP BY, ORDER BY, GROUP BY ... HAVING, LIKE, and
built-in functions COUNT, SUM, AVG, MAX, and MIN. The SELECT
statement can operate on joins of tables, and can handle subqueries,
including correlated subqueries. Expressions and set operations are also
possible. The UPDATE command may be used to update one or more
fields in one or more records. The INSERT command can insert one or
more records, possibly with null values for some fields. The DELETE
operator erases records, while leaving the table structure intact.

An active database is one where the DBMS actively monitors changes to
ensure that only legal instances of the database are created. A combination
of constraints and triggers may be used to create an active database.

The COMMIT statement makes permanent all changes that have been
made by the current transaction. The ROLLBACK statement undoes all
changes that were made by the current transaction. The current transac-
tion begins immediately after the last COMMIT or ROLLBACK, or if nei-
ther of these occurred, then at the beginning of the current user session.

SQL is often used in a programming environment rather than interac-
tively. It can be embedded in a host programming language and separately
compiled by a precompiler. It can be used with a standard API through
ODBC or JDBC. It can also be used as a complete language using its own
SQL PSMs. Oracle’s PL/SQL is an example of a complete programming
environment for creating SQL PSMs.

The CREATE VIEW command is used to define a virtual table, by select-
ing fields from existing base tables or previously defined views. The
SELECT operation can be used on views, but other DML commands are
restricted to certain types of views. An INSTEAD OF trigger is useful for
replacing user’s DML commands written on a view with corresponding
commands on the base table(s) used for the view. A view definition can be
destroyed by a DROP VIEW command.

6.10 Chapter Summary 351

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 351

The system catalog or system data dictionary is a database containing
information about the user’s database. It keeps track of the tables,
columns, indexes, and views that exist, as well as authorization informa-
tion and other data. The system automatically updates the catalog when
structural changes and other modifications are made.

Exercises

6.1 Write the commands needed to create indexes for the Student,
Faculty, Class, and Enroll tables in this chapter.

6.2 For each of the join examples (Examples 7–11) in Section 6.4.2,
replace the join by a subquery, if possible. If not possible, explain
why not.

Directions for exercises 6.3–6.25: For the schema that follows, write the
indicated commands in SQL. Figure 6.8 shows the DDL for creating these
tables. It shows that departmentName is a foreign key in the Worker
table, that mgrId is a foreign key in the Dept table, that projMgrId is a
foreign key in the Project table, and that projNo and empId are foreign
keys in the Assign table. We assume each department has a manager, and
each project has a manager, but these are not necessarily related. (Note: It
is recommended that you do Lab Exercise 1 in conjunction with these
exercises. If Oracle is not available, you can use another relational DBMS,
including the freeware MySQL, which you can download. Depending on
the product, you may need to make some changes to the DDL. If you do
not plan to do Lab Exercise 1, you can simply write out the commands.)

Worker (empId, lastName, firstName, departmentName, birthDate,
hireDate, salary)
Dept (departmentName, mgrId)
Project (projNo, projName, projMgrId, budget, startDate,
expectedDurationWeeks)
Assign (projNo, empId, hoursAssigned, rating)

6.3 Get the names of all workers in the accounting department.

6.4 Get an alphabetical list of names of all workers assigned to project 1001.

6.5 Get the name of the employee in the research department who
has the lowest salary.

6.6 Get details of the project with the highest budget.

6.7 Get the names and departments of all workers on project 1019.

352 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 352

Exercises 353

CREATE TABLE Worker (
empId NUMBER (6),
lastName VARCHAR2 (20) NOT NULL,
firstName VARCHAR2 (15) NOT NULL,
departmentNumber VARCHAR2 (15),
birthDate DATE,
hireDate DATE,
salary NUMBER (8, 2),
CONSTRAINT Worker_empid_pk PRIMARY KEY (empid),
CONSTRAINT Worker_departmentNumber FOREIGN KEY (departmentNumber) REFERENCES
Dept (departmentName) ON UPDATE CASCADE ON DELETE SET NULL);

CREATE TABLE Dept (
departmentName VARCHAR2 (15),
mgrId VARCHAR2 (20),
CONSTRAINT Dept_departmentName_pk PRIMARY KEY (departmentName),
CONSTRAINT Dept_mgrId FOREIGN KEY (mgrId) REFERENCES Worker (empId)) ON UPDATE
CASCADE ON
DELETE SET NULL;

CREATE TABLE Project (
projNo NUMBER (6),
projName VARCHAR2 (20),
projMgrId VARCHAR2 (20),
budget NUMBER (8, 2),
startDate DATE,

expectedDurationWeeks NUMBER (4),
CONSTRAINT Project_projNo_pk PRIMARY KEY (projNo),
CONSTRAINT Project_projMgrId_fk FOREIGN KEY (projMgrid) REFERENCES WORKER (empId)
ON UPDATE
CASCADE ON DELETE SET NULL);

FIGURE 6.8
DDL and Insert Statements for Worker-Project-Assign Example

(continued)

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 353

354 CHAPTER 6 Relational Database Management Systems and SQL

CREATE TABLE Assign (
projNo NUMBER (6),
empId NUMBER (6),
hoursAssigned NUMBER (3),
rating NUMBER (1),
CONSTRAINT Assign_projNo_empId_pk PRIMARY KEY (projNo, empId),
CONSTRAINT Assign_projNo_fk FOREIGN KEY (projNo) REFERENCES Project (projNo) ON UPDATE
CASCADE, ON DELETE NO ACTION,
CONSTRAINT Assign_empId_fk FOREIGN KEY (empId) REFERENCES Worker (empId) ON
UPDATE
CASCADE, ON DELETE CASCADE);

INSERT INTO Dept VALUES (‘Accounting’,);
INSERT INTO Dept VALUES (‘Research’,);

INSERT INTO Worker VALUES(101,‘Smith’, ‘Tom’,‘Accounting’, ‘01-Feb-1960’, ‘06-Jun-1983’,50000);
INSERT INTO Worker VALUES(103,‘Jones’,‘Mary’,‘Accounting’, ‘15-Jun-1965’, ‘20-Sep-1985’,48000);
INSERT INTO Worker VALUES(105,‘Burns’,‘Jane’, ‘Accounting’, ‘21-Sep-1970’,‘12-Jun-1990’,39000);
INSERT INTO Worker VALUES(110,‘Burns’,‘Michael’, ‘Research’, ‘05-Apr-1967’, ‘10-Sep-1990’,70000);
INSERT INTOWorker VALUES(115,‘Chin’,‘Amanda’, ‘Research’, ‘22-Sep-1965’, ‘19-Jun-1985’,60000);

UPDATE Dept SET mgrId = 101 WHERE deptName = ‘Accounting’;
UPDATE Dept SET mgrId = 101 WHERE deptName = ‘Research’;

INSERT INTO Project VALUES (1001,‘Jupiter’, 101, 300000,‘01-Feb-2004’, 50);
INSERT INTO Project VALUES (1005,‘Saturn’, 101, 400000,‘01-Jun-2004’, 35);
INSERT INTO Project VALUES (1019,‘Mercury’, 110, 350000,‘15-Feb-2004’, 40);
INSERT INTO Project VALUES (1025,‘Neptune’, 110, 600000,‘01-Feb-3005’, 45);
INSERT INTO Project VALUES (1030,‘Pluto’, 110, 380000,‘15-Sept-2004’, 50);

INSERT INTO Assign VALUES (1001, 101, 30,);
INSERT INTO Assign VALUES (1001, 103, 20, 5);
INSERT INTO Assign VALUES (1005, 103, 20,);
INSERT INTO Assign VALUES (1001, 105, 30,);
INSERT INTO Assign VALUES (1001, 115, 20, 4);
INSERT INTO Assign VALUES (1019, 110, 20, 5);
INSERT INTO Assign VALUES (1019, 115, 10, 4);
INSERT INTO Assign VALUES (1025, 110, 10,);
INSERT INTO Assign VALUES (1030, 110, 10,);

FIGURE 6.8—Continued

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 354

Exercises 355

6.8 Get an alphabetical list of names and corresponding ratings of all
workers on any project that is managed by Michael Burns.

6.9 Create a view that has project number and name of each project,
along with the IDs and names of all workers assigned to it.

6.10 Using the view created in Exercise 6.9, find the project number
and project name of all projects to which employee 1001 is
assigned.

6.11 Add a new worker named Jack Smith with ID of 1999 to the
research department.

6.12 Change the hours, which employee 110 is assigned to project
1019, from 20 to 10.

6.13 For all projects starting after May 1, 2004, find the project number
and the IDs and names of all workers assigned to them.

6.14 For each project, list the project number and how many workers
are assigned to it.

6.15 Find the employee names and department manager names of all
workers who are not assigned to any project.

6.16 Find the details of any project with the word “urn” anywhere in its
name.

6.17 Get a list of project numbers and names and starting dates of all
projects that have the same starting date.

6.18 Add a field called status to the Project table. Sample values
for this field are active, completed, planned, can-
celled. Then write the command to undo this change.

6.19 Get the employee ID and project number of all employees who
have no ratings on that project.

6.20 Assuming that salary now contains annual salary, find each
worker’s ID, name, and monthly salary.

6.21 Add a field called numEmployeesAssigned to the Project table.
Use the UPDATE command to insert values into the field to cor-
respond to the current information in the Assign table. Then write
a trigger that will update the field correctly whenever an assign-
ment is made, dropped, or updated. Write the command to make
these changes permanent.

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 355

356 CHAPTER 6 Relational Database Management Systems and SQL

6.22 a. Write an Oracle data dictionary query to show the names of all
the columns in a table called Customers.

6.22 b. Write a corresponding query for the DB2 UDB SYSCAT tables for
this example.

6.23 a. Write an Oracle data dictionary query to find all information
about all columns named PROJ#.

6.23 b. Write a corresponding query for the DB2 UDB SYSCAT tables for
this example.

6.24. a. Write an Oracle data dictionary query to get a list of names of
people who have created tables, along with the number of tables
each has created. Assume you have DBA privileges.

6.24 b. Write a corresponding query for the DB2 UDB SYSCAT tables for
this example.

6.25 a. Write an Oracle data dictionary query to find the names of tables
that have more than two indexes.

6.25 b. Write a corresponding query for the DB2 UDB SYSCAT tables for
this example.

Lab Exercises

Lab Exercise 6.1. Exploring the Oracle Database for Worker-Dept-Project-
Assign Example (script is on CD)

A script to create an Oracle database for the example used in
exercises 6.3–6.25 appears in Figure 6.8 and on the CD that accompanies
this book. The script was written using Notepad. Find the script on the
CD, copy it into your own directory, and open it with Notepad. Open Ora-
cle’s SQLPlus facility. You will switch back and forth between Notepad and
SQLPlus, because the editor in SQLPlus is hard to use.

a. In Notepad, highlight and copy the command to create the first
table, then switch to SQLPlus and paste that command in the
SQLPlus window and execute the command. You should see the
message “Table created.” If you get an error message instead, go
back to the Notepad file and correct the error.

b. Continue to create the remaining tables one at a time in the same
manner.

007_33148_06_286-372_1e.qxd 1/28/04 8:02 AM Page 356

Sample Project: Creating and Manipulating a Relational Database for the Art Gallery 357

c. Run the INSERT commands to populate the tables. Explain why
the two UPDATE statements were used.

d. Using that implementation, execute the Oracle SQL statements for
Exercises 6.3–6.25.

Lab Exercise 6.2. Creating and Using a Simple Database in Oracle

a. Write the DDL commands to create the Student, Faculty, Class,
and Enroll tables for the University database shown in Figure 6.2.

b. Using the INSERT command, add the records as they appear in
Figure 6.3 to your new Oracle database.

c. Write SQL queries for the following questions, and execute them.

i. Find the names of all history majors.

ii. Find the class number, schedule, and room for all classes that
Smith of the history department teaches.

iii. Find the names of all students who have fewer than average
number of credits.

iv. Find the names of all the teachers that Ann Chin has, along
with all her classes and midterm grades from each.

v. For each student, find the number of classes he or she is
enrolled in.

SAMPLE PROJECT: CREATING AND MANIPULATING A RELATIONAL DATABASE
FOR THE ART GALLERY

In the sample project section at the end of Chapter 5, we created a normal-
ized relational model for The Art Gallery database. Renaming the tables
slightly, we concluded that the following model should be implemented:

(1) Artist (artistId, firstName, lastName, interviewDate,
interviewerName, areaCode, telephoneNumber, street, zip,
salesLastYear, salesYearToDate, socialSecurityNumber, usualMedium,
usualStyle, usualType)

(2) Zips (zip, city, state)

(3) PotentialCustomer (potentialCustomerId, firstname, lastName,
areaCode, telephoneNumber, street, zip, dateFilledIn,
preferredArtistId, preferredMedium, preferredStyle, preferredType)

007_33148_06_286-372_1e.qxd 1/28/04 8:03 AM Page 357

(4) Artwork (artworkId, artistId, workTitle, askingPrice, dateListed,
dateReturned, dateShown, status, workMedium, workSize, workStyle,
workType, workYearCompleted, collectorSocialSecurityNumber)

(5) ShownIn (artworkId,showTitle)

(6) Collector (socialSecurityNumber, firstName, lastName, street,
zip, interviewDate, interviewerName, areaCode, telephonenumber,
salesLastYear, salesYearToDate, collectionArtistId, collectionMedium,
collectionStyle, collectionType, SalesLastYear, SalesYearToDate)

(7) Show (showTitle, showFeaturedArtistId, showClosingDate,
showTheme, showOpeningDate)

(8) Buyer (buyerId, firstName, lastName, street, zip, areaCode,
telephoneNumber, purchasesLastYear, purchasesYearToDate)

(9) Sale (InvoiceNumber, artworkId, amountRemittedToOwner, saleDate,
salePrice, saleTax, buyerId, salespersonSocialSecurityNumber)

(10) Salesperson (socialSecurityNumber, firstName, lastName, street,
zip)

■ Step 6.1. Update the data dictionary and list of assumptions if
needed. For each table, write the table name and write out the
names, data types, and sizes of all the data items, identify any con-
straints, using the conventions of the DBMS you will use for
implementation.

No changes were made to the list of assumptions. No changes to the listed
data items in the data dictionary are needed. For an Oracle database, the
tables will have the structures as follows:

TABLE Zips
Item Datatype Size Constraints Comments

Zip CHAR 10 PRIMARY KEY
city VARCHAR2 15 NOT NULL
state CHAR 2 NOT NULL

358 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:03 AM Page 358

TABLE Artist
Item Datatype Size Constraints Comments

artistId NUMBER 6 PRIMARY KEY
firstName VARCHAR2 15 NOT NULL; (firstName, lastName) UNIQUE
lastName VARCHAR2 20 NOT NULL; (firstName, lastName) UNIQUE
interviewDate DATE
interviewerName VARCHAR2 35
areaCode CHAR 3
telephoneNumber CHAR 7
street VARCHAR2 50
zip CHAR 5 FOREIGN KEY REF Zips
salesLastYear NUMBER 8,2
salesYearToDate NUMBER 8,2
socialSecurityNumber CHAR 9 UNIQUE
usualMedium VARCHAR 15
usualStyle VARCHAR 15
usualType VARCHAR 20

TABLE Collector
Item Datatype Size Constraints Comments

socialSecurityNumber CHAR 9 PRIMARY KEY
firstName VARCHAR2 15 NOT NULL
lastName VARCHAR2 20 NOT NULL
interviewDate DATE
interviewerName VARCHAR2 35
areaCode CHAR 3
telephoneNumber CHAR 7
street VARCHAR2 50
zip CHAR 5 FOREIGN KEY Ref Zips
salesLastYear NUMBER 8,2
salesYearToDate NUMBER 8,2
collectionArtistId NUMBER 6 FOREIGN KEY REF Artist
collectionMedium VARCHAR 15
collectionStyle VARCHAR 15
collectionType VARCHAR 20

Sample Project: Creating and Manipulating a Relational Database for The Art Gallery 359

007_33148_06_286-372_1e.qxd 1/28/04 8:03 AM Page 359

TABLE PotentialCustomer
Item Datatype Size Constraints Comments

potentialCustomerId NUMBER 6 PRIMARY KEY
firstname VARCHAR2 15 NOT NULL
lastName VARCHAR2 20 NOT NULL
areaCode CHAR 3
telephoneNumber CHAR 7
street VARCHAR2 50
zip CHAR 5 FOREIGN KEY REF Zips
dateFilledIn DATE
preferredArtistId NUMBER 6 FOREIGN KEY REF Artist
preferredMedium VARCHAR2 15
preferredStyle VARCHAR2 15
preferredType VARCHAR2 20

TABLE Artwork
Item Datatype Size Constraints Comments

artworkId NUMBER 6 PRIMARY KEY
artistId NUMBER 6 FOREIGN KEY REF Artist; NOT NULL; (artistId,

workTitle) UNIQUE
workTitle VARCHAR2 50 NOT NULL; (artistId, workTitle) UNIQUE
askingPrice NUMBER 8,2
dateListed DATE
dateReturned DATE
dateShown DATE
status VARCHAR2 15
workMedium VARCHAR2 15
workSize VARCHAR2 15
workStyle VARCHAR2 15
workType VARCHAR2 20
workYearCompleted CHAR 4
collectorSocialSecurity- CHAR 9 FOREIGN KEY REF Collector
Number

360 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:03 AM Page 360

TABLE Show
Item Datatype Size Constraints Comments

showTitle VARCHAR2 50 PRIMARY KEY
showFeaturedArtistId NUMBER 6 FOREIGN KEY REF Arist
showClosingDate DATE
showTheme VARCHAR2 50
showOpeningDate DATE

TABLE ShownIn
Item Datatype Size Constraints Comments

artworkId NUMBER 6 PRIMARY KEY(artworkId, showTitle);
FOREIGN KEY REFArtwork

showTitle VARCHAR2 50 PRIMARY KEY(artworkId, showTitle);
FOREIGN KEY REF Show

TABLE Buyer
buyerId NUMBER6 PRIMARY KEY
firstName VARCHAR2 15 NOT NULL
lastName VARCHAR2 20 NOT NULL
street VARCHAR2 50
zip CHAR 5 FOREIGN KEY REF Zips
areaCode CHAR 3
telephoneNumber CHAR 7
purchasesLastYear NUMBER 8,2
purchasesYearToDate NUMBER 8,2

TABLE Salesperson
Item Datatype Size Constraints Comments

socialSecurityNumber CHAR 9 PRIMARY KEY
firstName VARCHAR2 15 NOT NULL; (firstName,lastName) UNIQUE
lastName VARCHAR2 20 NOT NULL; (firstName,lastName) UNIQUE
street VARCHAR2 50
zip CHAR 5 FOREIGN KEY REF Zips

Sample Project: Creating and Manipulating a Relational Database for The Art Gallery 361

007_33148_06_286-372_1e.qxd 1/28/04 8:03 AM Page 361

TABLE Sale
Item Datatype Size Constraints Comments

invoiceNumber NUMBER 6 PRIMARY KEY
artworkId NUMBER 6 NOT NULL; UNIQUE; FOREIGN KEY REF

Artwork
amountRemittedToOwner NUMBER 8,2 DEFAULT 0.00
saleDate DATE
salePrice NUMBER 8,2
saleTax NUMBER 6,2
buyerId NUMBER 6 NOT NULL; FOREIGN KEY REF Buyer
salespersonSocialSecurityNumber CHAR 9

■ Step 6.2. Write and execute SQL statements to create all the tables
needed to implement the design.

Because we wish to specify foreign keys as we create the tables, we must be
careful of the order in which we create, because the “home table” has to
exist before the table containing the foreign key is created. Therefore, we
will use the following order: Zips, Artist, Collector, Potential Customer,
Artwork, Show, ShownIn, Buyer, Salesperson, Sale. The DDL statements to
create the tables are shown in Figure 6.9. We are using Oracle syntax, but
the DDL statements should work, with minor modifications, for any rela-
tional DBMS.

■ Step 6.3. Create indexes for foreign keys and any other columns
that will be used most often for queries.

The DDL statements to create the indexes are shown in Figure 6.10.

■ Step 6.4. Insert about five records in each table, preserving all con-
straints. Put in enough data to demonstrate how the database will
function.

Figure 6.11 shows the INSERT statements. Because we wish to make use of
Oracle’s system-generated values for surrogate keys, we created sequences
for each of artistId, potentialCustomerId, artworkId, and buyerId, using
this command:

CREATE SEQUENCE sequence-name
[START WITH starting-value]
[INCREMENT BY step] . . .;

362 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:03 AM Page 362

Sample Project: Creating and Manipulating a Relational Database for The Art Gallery 363

CREATE TABLE Zips (
zip CHAR (5),
city VARCHAR2 (15) NOT NULL,
state CHAR (2) NOT NULL,
CONSTRAINT Zips_zip_pk PRIMARY KEY (zip));

CREATE TABLE Artist (
ArtistId NUMBER (6),
firstName VARCHAR2 (15) NOT NULL,
lastName VARCHAR2 (20) NOT NULL,
interviewDate DATE,
interviewerName VARCHAR2 (35),
areaCode CHAR (3),
telephoneNumber CHAR (7),
street VARCHAR2 (50),
zip CHAR (5),
salesLastYear NUMBER (8, 2),
salesYearToDate NUMBER (8, 2),
socialSecurityNumber CHAR (9),
usualMedium VARCHAR (15),
usualStyle VARCHAR (15),
usualType VARCHAR (20),
CONSTRAINT Artist_ArtistId_pk PRIMARY KEY (ArtistId),
CONSTRAINT Artist_socialSecurityNumber_uk UNIQUE (socialSecurityNumber),
CONSTRAINT Artist_firstName_lastName_uk UNIQUE (firstName, lastName),
CONSTRAINT Artist_zip_fk FOREIGN KEY (zip) REFERENCES Zips (zip)) ON UPDATE

CASCADE ON DELETE SET NULL;

CREATE TABLE Collector (
socialSecurityNumber CHAR (9),
firstName VARCHAR2 (15) NOT NULL,
lastName VARCHAR2 (20) NOT NULL,
interviewDate DATE,
interviewerName VARCHAR2 (35),
areaCode CHAR (3),
telephoneNumber CHAR (7),

FIGURE 6.9
Oracle DDL Statements for The Art Gallery Tables

(continued)

007_33148_06_286-372_1e.qxd 1/28/04 8:04 AM Page 363

364 CHAPTER 6 Relational Database Management Systems and SQL

street VARCHAR2 (50),
zip CHAR (5),
salesLastYear NUMBER (8, 2),
salesYearToDate NUMBER (8, 2),
collectionArtistId NUMBER (6),
collectionMedium VARCHAR (15),
collectionStyle VARCHAR (15),
collectionType VARCHAR (20),
CONSTRAINT Collector_socialSecurityNumber_pk PRIMARY KEY
(socialSecurityNumber).
CONSTRAINT Collector_collectionArtistid_fk FOREIGN KEY (collectionArtistId)

REFERENCES Artist (artistId) ON UPDATE CASCADE ON DELETE NO ACTION;
CONSTRAINT Collector_zip_fk FOREIGN KEY (zip) REFERENCES Zips (zip)) ON UPDATE

CASCADE ON DELETE SET NULL;

CREATE TABLE PotentialCustomer (
potentialCustomerId NUMBER (6),
firstname VARCHAR2 (15) NOT NULL,
lastName VARCHAR2 (20) NOT NULL,
areaCode CHAR (3),
telephoneNumber CHAR (7),
street VARCHAR2 (50),
zip CHAR (5),
dateFilledIn DATE,
preferredArtistId NUMBER (6),
preferredMedium VARCHAR2 (15),
preferredStyle VARCHAR2 (15),
preferredType VARCHAR2 (20),
CONSTRAINT PotentialCustomer_potentialCustomerId_pk PRIAMRY KEY
(potentialCustomerId),
CONSTRAINT PotentialCustomer_zip_fk FOREIGN KEY (zip)
REFERENCES Zips (zip) ON UPDATE CASCADE ON DELETE SET NULL,
CONSTRAINT Potential Customer preferredArtistId_fk FOREIGN KEY
(preferredArtistId) REFERENCES Artist (artist_Id)) ON UPDATE CASCADE ON DELETE SET NULL;

CREATE TABLE Artwork (
artworkId NUMBER (6),
artistId NUMBER (6) NOT NULL,

FIGURE 6.9—Continued

007_33148_06_286-372_1e.qxd 1/28/04 8:04 AM Page 364

Sample Project: Creating and Manipulating a Relational Database for The Art Gallery 365

workTitle VARCHAR2 (50) NOT NULL,
askingPrice NUMBER (8, 2),
dateListed DATE,
dateReturned DATE,
dateShown DATE,
status VARCHAR2 (15),
workMedium VARCHAR2 (15),
workSize VARCHAR2 (15),
workStyle VARCHAR2 (15),
workType VARCHAR2 (20),
workYearCompeted CHAR (4),
collectorSocialSecurityNumber CHAR (9),
CONSTRAINT Artwork_artworkId_pk PRIMARY KEY (artworkId).
CONSTRAINT Artwork_artistId_workTitle_uk UNIQUE (artistId, workTitle),
CONSTRAINT Artwork_artistId_fk FOREIGN KEY (artistId) REFERENCES Artist (artistId)
ON UPDATE CASCADE ON DELETE NO ACTION,
CONSTRAINT Artwork_collectorSocialSecurityNumber_fk FOREIGN KEY

(collectorSocialSecurityNumber) REFERENCES Collector (socialSecurityNumber) ON UPDATE
CASCADE ON DELETE NO ACTION);

CREATE TABLE Show (
showTitle VARCHAR2 (50),
showFeaturedArtistId NUMBER (6),
showClosingDate DATE,
showTheme VARCHAR2 (50),
showOpeningDate DATE,
CONSTRAINT Show_showTitle_pk PRIMARY KEY (showTitle),
CONSTRAINT Show_showFeaturedArtistId_fk FOREIGN KEY (showFeaturedArtistId)

REFERENCES Artist (artistId) ON UPDATE CASCADE ON DELETE NO ACTION);

CREATE TABLE ShownIn (
artworkId NUMBER (6),
showTitle VARCHAR2 (50),
CONSTRAINT ShownIn_artworkid_showTitle_pk PRIMARY KEY (artworkId,showTitle),
CONSTRAINT ShownIn_artworkId_fk FOREIGN KEY (artworkId) REFERENCES Artwork
(artworkId) ON UPDATE CASCADE ON DELETE NO ACTION,

(continued)

FIGURE 6.9—Continued

007_33148_06_286-372_1e.qxd 1/28/04 8:04 AM Page 365

366 CHAPTER 6 Relational Database Management Systems and SQL

CONSTRAINT ShownIn_showTitle_fk FOREIGN KEY (showTitle) REFERENCES Show
(showTitle) ON UPDATE CASCADE ON DELETE NO ACTION);

CREATE TABLE Buyer (
buyerId NUMBER (6),
firstName VARCHAR2 (15) NOT NULL,
lastName VARCHAR2 (20) NOT NULL,
street VARCHAR2 (50),
zip CHAR (5),
areaCode CHAR (3),
telephoneNumber CHAR (7),
purchasesLastYear NUMBER (8, 2),
purchasesYearToDate NUMBER (8, 2),
CONSTRAINT Buyer_buyerId_pk PRIMARY KEY (buyerId),
CONSTRAINT Buyer_zip_fk FOREIGN KEY (zip) REFERENCES Zips (zip) ON UPDATE
CASCADE ON DELETE SET NULL);

CREATE TABLE Salesperson (
socialSecurityNumber CHAR (9),
firstName VARCHAR2 (15) NOT NULL,
lastName VARCHAR2 (20) NOT NULL,
street VARCHAR2 (50),
zip CHAR (5),
CONSTRAINT Salesperson_socialSecurityNumber_pk PRIMARY KEY
socialSecurityNumber),
CONSTRAINT Salesperson_firstName_lastName_uk UNIQUE (firstName, lastName),
CONSTRAINT Salesperson_zip_fk FOREIGN KEY (zip) REFERENCES Zips (zip) ON
UPDATE

CASCADE ON DELETE SET NULL);

CREATE TABLE Sale (
invoiceNumber NUMBER (6),
artworkId NUMBER (6) NOT NULL,
amountRemittedToOwner NUMBER (8, 2) DEFAULT 0.00,
saleDate DATE,
salePrice NUMBER (8, 2),
saleTax NUMBER (6, 2),
buyerId NUMBER (6) NOT NULL,

FIGURE 6.9—Continued

007_33148_06_286-372_1e.qxd 1/28/04 8:04 AM Page 366

Sample Project: Creating and Manipulating a Relational Database for The Art Gallery 367

salespersonSocialSecurityNumber CHAR (9),
CONSTRAINT Sale_invoiceNumber_pk PRIMARY KEY (invoiceNumber),
CONSTRAINT Sale_artworkId_uk UNIQUE (artworkId),
CONSTRAINT Sale_artworkId_fk FOREIGN KEY (artworkId) REFERENCES Artwork (artworkId)
ON UPDATE CASCADE ON DELETE NO ACTION,
CONSTRAINT Sale_buyerId_fk FOREIGN KEY (buyerId) REFERENCES Buyer (buyerId) ON
UPDATE CASCADE ON DELETE NO ACTION);

CREATE UNIQUE INDEX Artist_lastName_firstName ON Artist(lastName, firstName);
CREATE UNIQUE INDEX Artist_socialSecurityNumber ON Artist(socialSecurityNumber);
CREATE INDEX Artist_zip ON Artist(zip);

CREATE INDEX Collector_collectionArtistId On Collector(collectionArtistId);
CREATE INDEX Collector_zip ON Collector(zip);
CREATE INDEX Collector_lastName_firstName ON Collector(lastName, firstName);

CREATE INDEX PotentialCustomer_zip ON PotentialCustomer(zip);
CREATE INDEX PotentialCustomer_preferredArtistId ON PotentialCustomer(preferredArtistId);
CREATE INDEX PotentialCustomer_lastName_firstName ON PotentialCustomer(lastName,
firstName);

CREATE UNIQUE INDEX Artwork_artistId_workTitle ON Artwork (artistId, workTitle);
CREATE INDEX Artwork_artistId ON Artwork(artistId);
CREATE INDEX Artwork_collectorSocialSecurityNumber ON Artwork
(collectorSocial-SecurityNumber);

CREATE INDEX Show_showFeaturedArtistId On Show (showFeaturedArtistId);

CREATE INDEX Shownin_artworkId ON Shownin (artworkId);
CREATE INDEX Shownin_show Title ON ShownIn (showTitle);

CREATE INDEX Buyer_zip ON Buyer(zip);
CREATE INDEX Buyer_lastName_firstName ON Buyer (lastName, firstName);

CREATE UNIQUE INDEX Salesperson_lastName_firstName ON Salesperson (lastName,firstName);
CREATE INDEX Salesperson_zip ON Salespeson (zip);

CREATE UNIQUE INDEX Sale_artworkId ON Sale (artworkId);
CREATE INDEX Sale_buyerId ON Sale (buyerId);

FIGURE 6.10
Oracle DDL Statements for The Art Gallery Indexes

007_33148_06_286-372_1e.qxd 1/28/04 8:04 AM Page 367

368 CHAPTER 6 Relational Database Management Systems and SQL

INSERT INTO Zips VALUES (‘10101,’‘New York,’‘NY’);
INSERT INTO Zips VALUES (‘10801’,‘New Rochelle,’‘NY’);
INSERT INTO Zips VALUES (‘92101’,‘San Diego’,‘CA’);
INSERT INTO Zips VALUES (‘33010’,‘Miami’,‘FL’);
INSERT INTO Zips VALUES (‘60601’,‘Chicago’,‘IL’);

CREATE SEQUENCE artistId sequence;
INSERT INTO Artist VALUES(artistId_sequence.NEXTVAL,‘Leonardo’,‘Vincenti’,‘10-Oct-1999’,
‘Hughes,’‘212’,‘5559999’,‘10 Main Street,’‘10101’,9000,4500,‘099999876’,‘oil’,‘realism’,‘painting’);
INSERT INTO Artist VALUES(artistId_sequence.NEXTVAL,‘Vincent’,‘Gogh’,‘15-Jun-2004’,
‘Hughes’,‘914,’‘5551234,’‘55 West 18 Street’,‘10801’, 9500, 5500,‘099999877’,‘oil’,
‘impressionism’,‘painting’);
INSERT INTO Artist VALUES(artistId_sequence.NEXTVAL,‘Winslow’,‘Homes’,‘05-Jan-2004’,
‘Hughes’,‘619’,‘1234567’,‘100 Water Street’,‘92101’, 14000, 4000,‘083999876’,‘watercolor’,
‘realism’,‘painting’);
INSERT INTO Artist VALUES(artistId_sequence.NEXTVAL,‘Alexander’,‘Calderone’,‘10-Feb-
1999’,‘Hughes’,‘212’,‘5559999’,‘10 Main Street’,‘10101’, 20000, 20000,‘123999876’,‘steel’,
‘cubism’,‘sculpture’);
INSERT INTO Artist VALUES(artistId_sequence.NEXTVAL,‘Georgia’,‘Keefe’,‘05-Oct-2004’,
‘Hughes’,‘305’,‘1239999’,‘5 Chestnut Street’,‘33010’, 19000, 14500,‘987999876’,‘oil’,‘realism’,
‘painting’);

INSERT INTO Collector VALUES(‘102345678’,‘John’,‘Jackson’,‘01-Feb-2004’,‘Hughes’,‘917’,
‘7771234’,‘24 Pine Avenue,’‘10101’, 4000, 3000, 1,‘oil’,‘realism’,‘collage’);
INSERT INTO Collector VALUES (‘987654321’,‘Mary’,‘Lee’,‘01-Mar-2003’,‘Jones’,‘305’,
‘5551234’,‘10 Ash Street’, 33010,‘2000’, 3000, 2,‘watercolor’,‘realism’,‘painting’);
INSERT INTO Collector VALUES(‘034345678’,‘Ramon’,‘Perez’,‘15-Apr-2003’,‘Hughes’,‘619’,
‘8881234’,‘15 Poplar Avenue’,‘92101’, 4500, 3500, 3,‘oil’,‘realism’,‘painting’);
INSERT INTO Collector VALUES(‘888881234’,‘Rick’,‘Lee’,‘20-Jun-2004’,‘Hughes’,‘212’,
‘9991234’,‘24 Pine Avenue’,‘10101’, 4000, 3000, 3,‘oil’,‘realism’,‘sculpture’);
INSERT INTO Collector VALUES(‘777345678’,‘Samantha’,‘Torno’,‘05-May-2004’,‘Jones’,‘305’,
‘5551234’,‘10 Ash Street’,‘33010’, 40000, 30000, 1,‘acrylic’,‘realism’,‘painting’);

CREATE SEQUENCE potentialCustomerId-sequence;
INSERT INTO PotentialCustomer VALUES(potentialCustomerId_sequence.NEXTVAL,‘Adam’,
‘Burns’,‘917’,‘3456789’,‘1 Spruce Street’,‘10101’,‘12-Dec-2003’, 1,‘watercolor’,‘impressionism’,
‘painting’);
INSERT INTO PotentialCustomer VALUES(potentialCustomerId sequence.NEXTVAL,‘Carole’,‘Burns’,
‘917’,‘3456789’,‘1 Spruce Street’,‘10101’,‘12-Dec-2003’,2,‘watercolor’,‘realism’,sculpture’);
INSERT INTO PotentialCustomer VALUES(potentialCustomerId_sequence.NEXTVAL,‘David’,
‘Engel’,‘914’,‘7777777’,‘715 North Avenue’,‘10801’,‘08-Aug-2003’, 3,‘watercolor’,‘realism’,
‘painting’);

FIGURE 6.11
INSERT statements to populate The Art Gallery Tables

007_33148_06_286-372_1e.qxd 1/28/04 8:04 AM Page 368

Sample Project: Creating and Manipulating a Relational Database for The Art Gallery 369

INSERT INTO PotentialCustomer VALUES(potentialCustomerId_sequence.NEXTVAL,‘Frances’,
‘Hughes’,‘619’,‘3216789’,‘10 Pacific Avenue’,‘92101’,‘05-Jan-2004’, 2,‘oil’,‘impressionism’,
‘painting’);
INSERT INTO PotentialCustomer VALUES(potentialCustomerId_sequence.NEXTVAL,‘Irene’,
‘Jacobs’,‘312’,‘1239876’,‘1 Windswept Place’,‘60601’,‘21-Sep-2003’, 5,‘watercolor’,‘abstract
expressionism’,‘painting’);

CREATE SEQUENCE artworkId_sequence;
INSERT INTO Artwork VALUES(artworkId_sequence.NEXTVAL, 1,‘Flight’, 15000.00,‘08-Sep-
2003’,,,‘for sale’,‘oil’,‘36 in × 48 in’,‘realism’,‘painting,’‘2001’,);
INSERT INTO Artwork VALUES(artworkId_sequence.NEXTVAL, 3,‘Bermuda Sunset’, 8000.00,
‘15-Mar-2004’, ,‘01-Apr-2004’,‘solid’,‘watercolor’,‘22 in × 28 in’,‘realism’,‘painting’, 2003’,);
INSERT INTO Artwork VALUES(artworkId_sequence.NEXTVAL, 3,‘Mediterranean Coast’,
4000.00,‘18-Oct-2003’, ,‘01-Apr-2004’,‘for sale’,‘watercolor’,‘22 in × 28 in’,‘realism’,‘paint-
ing,’‘2000’,‘102345678’);
INSERT INTO Artwork VALUES(artworkId_sequence.NEXTVAL, 5,‘Ghost orchid’, 18000.00,‘05-
Jun-2003’, , ,‘sold’,‘oil’,‘36 in × 48 in’,‘realism’,‘painting’,‘2001’,‘034345678’);
INSERT INTO Artwork VALUES(artworkId_sequence.NEXTVAL, 4,‘Five Planes’, 15000.00,‘10-
Jan-2004’, ,‘10-Mar-2004’‘for sale’,‘steel’,‘36 in X 60 in’,‘cubism’,‘sculpture’,‘2003’,
‘034345678’);

INSERT INTO Show VALUES(‘The Sea in Watercolor’,3,‘30-Apr-2004’,‘seascapes’,‘01-Apr-2004’);
INSERT INTO Show VALUES(‘Calderone”s Mastery of Space’, 4,‘20-Mar-2004’, ,‘10-Mar-2004’);

INSERT INTO Shownin VALUES(2,‘The Sea in Watercolor’);
INSERT INTO Shownin VALUES(3,‘The Sea in Watercolor’);
INSERT INTO Shownin VALUES(5,‘Calderone”s Mastery of Space’);

CREATE SEQUENCE buyerId_sequence;
INSERT INTO Buyer VALUES (BuyerId_sequence.NEXTVAL,‘Valerie’,‘Smiley’,‘15 Hudson
Street’,‘10101’,‘718’,‘5551234’, 5000, 7500);
INSERT INTO Buyer VALUES (BuyerId_sequence.NEXTVAL,‘Winston’,‘Lee’,‘20 Liffey Avenue’,
‘60601’,‘312’,‘7654321’, 3000, 0);
INSERT INTO Buyer VALUES (BuyerId_sequence.NEXTVAL,‘Samantha’,‘Babson’,‘25 Thames
Lane’,‘92101’,‘619’,‘4329876’, 15000, 0);
INSERT INTO Buyer VALUES (BuyerId_sequence.NEXTVAL,‘John’,‘Flagg’,‘22 Amazon Street’,
‘10101’,‘212’,‘7659876’, 3000, 0);
INSERT INTO Buyer VALUES (BuyerId_sequence.NEXTVAL,‘Terrence’,‘Smallshaw’,‘5 Nile
Street’,‘33010’,‘305’,‘2323456’, 15000, 17000);

INSERT INTO Salesperson VALUES(‘102445566’,‘John’,‘Smith’,‘10 Sapphire Row’,‘10801’);
INSERT INTO Salesperon VALUES(‘121344321’,‘Alan’,‘Hughes’,‘10 Diamond Street’,‘10101’);
INSERT INTO Salesperson VALUES(‘101889988’,‘Mary’,‘Brady’,‘10 Pearl Avenue’,‘10801’);
INSERT INTO Salesperson VALUES(‘111223344’,‘Jill’,‘Fleming’,‘10 Ruby Row’,‘10101’);
INSERT INTO Salesperson VALUES(‘123123123’,‘Terrence’,‘DeSimone’,‘10 Emerald Lane’,‘10101’);

INSERT INTO Sale VALUES(1234, 2,‘05-Apr-2004’, 7500, 600, 1,‘102445566’);
INSERT INTO Sale VALUES(1235, 4, ,‘06-Apr-2004’, 17000, 1360, 5,‘121344321’);

007_33148_06_286-372_1e.qxd 1/28/04 8:05 AM Page 369

We chose to start with one and increment by one, the defaults. To generate
each new value, we use the command <sequence_name>.NEXTVAL, as
shown in the INSERT commands. We assume invoiceNumber is a num-
ber preprinted on the invoice form, not system-generated, so we do not
need a sequence for that number.

■ Step 6.5. Write SQL statements that will process five non-routine
requests for information from the database just created. For each,
write the request in English, followed by the corresponding SQL
command.

1. Find the names of all artists who were interviewed after January 1,
2004, but who have no works of art listed.

SELECT firstName, lastName
FROM Artist
WHERE interviewDate > 01-Jan-2004 AND NOT EXISTS

(SELECT *
FROM Artwork
WHERE artistId =Artist.artistId);

2. Find the total commission for salesperson John Smith earned
between the dates April 1, 2004, and April 15, 2004. Recall that the
gallery charges 10% commission, and the salesperson receives
one-half of that, which is 5% of the selling price.

SELECT .05 * SUM(salePrice)
FROM Sale
WHERE saleDate > = 01-Apr-2004 AND

saleDate < = 15-Apr-2004 AND
salespersonSocialSecurityNumber = (SELECT socialSecurityNumber
FROM Salesperson
WHERE firstName= 'John' AND lastName ='Smith');

3. Find the collector names, artist names, and titles of all artworks
that are owned by collectors, not by the artists themselves, in
order by the collector’s last name.

SELECT Collector.firstName, Collector.lastName,
Artist.firstName, Artist.lastName, workTitle
FROM Artist, Artwork, Collector
WHERE Artist.artistId = Artwork.artistId AND
Artwork.collectorSocialSecurityNumber =
Collector.socialSecurityNumber AND
collectorSocialSecurityNumber IS NOT NULL
ORDER BY Collector.lastName, Collector.firstName;

370 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:05 AM Page 370

4. For each potential buyer, find information about shows that fea-
ture his or her preferred artist.

SELECT firstName, lastName, showTitle, showOpeningDate,
showClosingDate
FROM Show, PotentialCustomer
WHERE showFeaturedArtistId = PotentialCustomer.preferredArtistId
GROUP BY potentialCustomerId;

5. Find the average sale price of works of artist Georgia Keefe.

SELECT AVG(salePrice)
FROM Sale
WHERE artworkId IN (SELECT artworkId

FROM Artwork
WHERE artistId = (SELECT ArtistId

FROM Artist
WHERE lastName = 'Keefe' AND firstName
='Georgia'));

■ Step 6.6. Create at least one trigger and write the code for it. This
trigger will update the amount of the buyer’s purchases year-to-
date whenever a sale is completed.

CREATE TRIGGER UPDATEBUYERYTD
AFTER INSERT ON Sale

UPDATE Buyer
SET purchasesYearToDate = purchasesYearToDate + :NEW.salePrice
WHERE Buyer.buyerId = :NEW.buyerId;

STUDENT PROJECTS: CREATING AND USING A RELATIONAL DATABASE
FOR THE STUDENT PROJECT

For the normalized tables you developed at the end of Chapter 5 for the
project you have chosen, carry out the following steps to implement the
design using a relational database management system such as Oracle,
SQLServer, or MySQL.

■ Step 6.1. Update the data dictionary and list of assumptions as
needed. For each table, write the table name and write out the
names, data types, and sizes of all the data items, and identify any
constraints, using the conventions of the DBMS you will use for
implementation.

■ Step 6.2. Write and execute SQL statements to create all tables
needed to implement the design.

Student Projects: Creating and Using a Relational Database for The Student Project 371

007_33148_06_286-372_1e.qxd 1/28/04 8:05 AM Page 371

■ Step 6.3. Create indexes for foreign keys and for any other
columns as needed.

■ Step 6.4. Insert at least five records in each table, preserving all
constraints. Put in enough data to demonstrate how the database
will function.

■ Step 6.5. Write SQL statements that will process five non-routine
requests for information from the database just created. For each,
write the request in English, followed by the corresponding SQL
command.

■ Step 6.6. Create at least one trigger and write the code for it.

372 CHAPTER 6 Relational Database Management Systems and SQL

007_33148_06_286-372_1e.qxd 1/28/04 8:05 AM Page 372

