
3CHAPTER
Object-Oriented Programming,
Part 1: Using Classes

Introduction
3.1 Class Basics and Benefits
3.2 Creating Objects Using Constructors
3.3 Calling Methods
3.4 Using Object References
3.5 Programming Activity 1: Calling

Methods
3.6 The Java Class Library
3.7 The String Class
3.8 Formatting Output with the Decimal-

Format Class
3.9 Generating Random Numbers with the

Random Class
3.10 Input from the Console Using the Scanner

Class
3.11 Calling Static Methods and Using Static

Class Variables
3.12 Using System.in and System.out
3.13 The Math Class
3.14 Formatting Output with the Number-

Format Class

3.15 The Integer, Double, and Other Wrapper
Classes

3.16 Input and Output Using JOptionPane
Dialog Boxes

3.17 Programming Activity 2: Using Prede-
fined Classes

3.18 Chapter Summary
3.19 Exercises, Problems, and Projects

3.19.1 Multiple Choice Exercises
3.19.2 Reading and Understanding Code
3.19.3 Fill In the Code
3.19.4 Identifying Errors in Code
3.19.5 Debugging Area—Using Messages

from the Java Compiler and
Java JVM

3.19.6 Write a Short Program
3.19.7 Programming Projects
3.19.8 Technical Writing
3.19.9 Group Project

CHAPTER CONTENTS

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 93

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Introduction

Writing computer programs that use classes and objects is called object-
oriented programming, or OOP. Every Java program consists of at least
one class.

In this chapter, we’ll introduce object-oriented programming as a way to
use classes that have already been written. Classes provide services to the
program. These services might include writing a message to the program’s
user, popping up a dialog box, performing some mathematical calcula-
tions, formatting numbers, drawing shapes in a window, or many other
basic tasks that add a more professional look to even simple programs. The
program that uses a class is called the client of the class.

One benefit of using a prewritten class is that we don’t need to write the
code ourselves; it has already been written and tested for us. This means
that we can write our programs more quickly. In other words, we shorten
the development time of the program. Using prewritten and pretested
classes provides other benefits as well, including more reliable programs
with fewer errors.

In Chapter 7, we’ll show you how to write your own classes. For now, we’ll
explore how using prewritten classes can add functionality to our pro-
grams.

3.1 Class Basics and Benefits
In Java, classes are composed of data and operations—or functions—that
operate on the data. Objects of a class are created using the class as a tem-
plate, or guide. Think of the class as a generic description, and an object as
a specific item of that class. Or you can think of a class as a cookie cutter,
the objects of that class are the cookies made with the cookie cutter. For
example, a Student class might have the following data: name, year, and
grade point average. All students have these three data items. We can create
an object of the Student class by specifying an identifier for the object (for
example, student1) along with a name, year, and grade point average for a
particular student (for example, Maria Gonzales, Sophomore, 3.5). The
identifier of the object is called the object reference. Creating an object of a
class is called instantiating an object, and the object is called an instance
of the class. Many objects can be instantiated from one class. There can be

94 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 94

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

many instances of the Student class, that is, many Student objects can be
instantiated from the Student class. For example, we could create a second
object of the Student class, student2, with its data as Mike Smith, Junior, 3.0.

The data associated with an object of a class are called instance variables,
or fields, and can be variables and constants of any primitive data type
(byte, short, int, long, float, double, char, and boolean), or they can be objects
of other classes.

The operations for a class, called methods, set the values of the data,
retrieve the current values of the data, and perform other class-related
functions on the data. For example, the Student class would provide meth-
ods to set the values of the name, year, and grade point average; retrieve the
current values of the name, year, and grade point average; and perhaps pro-
mote a student to the next year. Invoking a method on an object is called
calling the method. With a few exceptions, only class methods can directly
access or change the instance variables of an object. Other objects must call
the methods to set or retrieve the values of the instance variables. Together,
the fields and methods of a class are called its members.

In essence, a class is a new data type, which is created by combining items of
Java primitive data types and objects of other classes. Just as the primitive
data types can be manipulated using arithmetic operators (+, –, *, /, and
%), objects can be manipulated by calling class methods.

We like to think of classes as similar to M&M™ candies: a protective
outer coating around a soft center. Because the methods to operate on
the data are included in the class, they provide a protective coating
around the data inside. In a well-designed class, only the class methods
can change the data. Methods of other classes cannot directly access the
data. We say that the data is private to the class. In other words, the class
encapsulates the data and the methods provide the only interface for
setting or changing the data values. The benefit from this encapsulation
is that the class methods ensure that only valid values are assigned to an
object. For example, a method to set a Student’s grade point average
would accept values only between 0.0 and 4.0.

Let’s look at another example of a class. The SimpleDate class, written by
the authors, has the instance variables month, day, and year. An object of
this class, independenceDay, could be instantiated with data values of 7, 4,
and 1776. Another object of that class, examDay, might be instantiated with

3.1 Class Basics and Benefits 95

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 95

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

the values 12, 4, and 2006. Methods of the SimpleDate class ensure that only
valid values are set for the month, day, and year. For example, the class
methods would not allow us to set a date with a value of January 32. Other
class methods increment the date to the next day and provide the date in
mm/dd/yyyy format.

Notice that the class names we used, Student and SimpleDate, begin with a
capital letter, and the object names, student1, independenceDay, and exam-
Day, start with a lowercase letter. By convention, class names start with a
capital letter. Object names, instance variables, and method names conven-
tionally start with a lowercase letter. Internal words start with a capital let-
ter in class names, object names, variables, and methods.

There are many benefits to using classes in a program. Some of the most
important benefits include reusability (not only in the current program but
also in other programs), encapsulation, and reliability.

A well-written class can be reused in many programs. For example, a Sim-
pleDate class could be used in a calendar program, an appointment-sched-
uling program, an online shopping program, and many more applications
that rely on dates. Reusing code is much faster than writing and testing new
code. As an added bonus, reusing a tested and debugged class in another
program makes the program more reliable.

Encapsulation of a class’s data and methods helps to isolate operations on
the data. This makes it easier to track the source of a bug. For example,
when a bug is discovered in an object of the Student class, then you know to
look for the problem in the methods of the Student class, because no other
code in your program can directly change the data in a Student object.

You do not need to know the implementation details of a class in order to
use it in your program. Does the SimpleDate class store the date in memory
as three integers, month, day, and year ? Or is the date stored as the number
of milliseconds since 1980? The beauty of object orientation is that we
don’t need to know the implementation of the class; all we need to know is
the class application programming interface (API), that is, how to instan-
tiate objects and how to call the class methods.

The benefits of using classes are clear. We will leave the details of creating
our own classes until Chapter 7. In the meantime, let’s explore how to use
classes that are already written.

96 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

�

By convention, class names
in Java start with a capital
letter. Method names,
instance variables, and
object names start with a
lowercase letter. In all of
these names, embedded
words begin with a capital
letter.

SOFTWARE
ENGINEERING TIP

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 96

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.2 Creating Objects Using Constructors
A class describes a generic template for creating, or instantiating, objects. In
fact, an object must be instantiated before it can be used. To understand
how to instantiate an object of a class and how to call methods of the class,
you must know the API of a class, which the creators of the class make pub-
lic. Table 3.1 shows the API of the SimpleDate class, written by the authors
of this textbook.

Instantiating an object consists of defining an object reference—which will
hold the address of the object in memory—and calling a special method of
the class called a constructor, which has the same name as the class. The
job of the constructor is to assign initial values to the data of the class.

Example 3.1 illustrates how to instantiate objects of the SimpleDate class.

1 /* A Demonstration of Using Constructors
2 Anderson, Franceschi
3 */
4
5 public class Constructors
6 {
7 public static void main(String [] args)
8 {
9 SimpleDate independenceDay;
10 independenceDay = new SimpleDate(7, 4, 1776);
11
12 SimpleDate graduationDate = new SimpleDate(5, 15, 2012);
13
14 SimpleDate defaultDate = new SimpleDate();
15 }
16 }

EXAMPLE 3.1 Demonstrating Constructors

Declaring an object reference is very much like declaring a variable of a
primitive type; you specify the data type and an identifier. For example, to
declare an integer variable named number1, you provide the data type (int)
and the identifier (number1), as follows:

int number1;

3.2 Creating Objects Using Constructors 97

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 97

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

98 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.1 The SimpleDate Class API

SimpleDate Class Constructor Summary

SimpleDate()

creates a SimpleDate object with initial default values of 1, 1,

2000.

SimpleDate(int mm, int dd, int yy)

creates a SimpleDate object with the initial values of mm, dd, and

yy.

SimpleDate Class Method Summary

Return value Method name and argument list

int getMonth()

returns the value of month.

int getDay()

returns the value of day.

int getYear()

returns the value of year.

void setMonth(int mm)

sets the month to mm; if mm is invalid, sets month to

1.

void setDay(int dd)

sets the day to dd; if dd is invalid, sets day to 1.

void setYear(int yy)

sets the year to yy.

void nextDay()

increments the date to the next day.

String toString()

returns the value of the date in the form:

month/day/year.

boolean equals(Object obj)

compares this SimpleDate object to another SimpleDate

object.

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 98

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

One notable difference in declaring an object reference is that its data type
is a class, not a primitive data type. Here is the syntax for declaring an
object reference:

ClassName objectReference1, objectReference2, ...;

In Example 3.1, lines 9, 12, and 14 declare object references for a Simple-
Date object. SimpleDate, the class name, is the data type, and independence-
Day, graduationDate, and defaultDate are the object references.

Object references can refer to any object of its class. For example, Simple-
Date object references can point to any SimpleDate object, but a SimpleDate
object reference cannot point to objects of other classes, such as a Student
object.

Once an object reference has been declared, you instantiate the object using
the following syntax:

objectReference = new ClassName(argument list);

This calls a constructor of the class to initialize the data. The argument list
consists of a comma-separated list of initial data values to assign to the
object. Classes often provide multiple constructors with different argument
lists. Depending on which constructor you call, you can accept default val-
ues for the data or specify initial values for the data. When you instantiate
an object, your argument list—that is, the number of arguments and their
data types—must match one of the constructors’ argument lists.

As shown in Table 3.1, the SimpleDate class has two constructors. The first
constructor, SimpleDate(), is called the default constructor, because its
argument list is empty. This constructor assigns default values to all data
in the object. Thus, in line 14 of Example 3.1, which uses the default con-
structor, the data for the defaultDate object is set to the default values for
the SimpleDate class, which are 1, 1, and 2000.

We see from Table 3.1 that the second constructor for the SimpleDate class,
SimpleDate(int mm, int dd, int yy), takes three arguments, all of which
should evaluate to integer values. The first argument is the value for the
month, the second argument is the value for the day, and the third argu-
ment is the value for the year.

Lines 10 and 12 of Example 3.1 instantiate SimpleDate objects using the
second constructor. In line 10, the argument list tells the constructor to give
the value 7 to the month, 4 to the day, and 1776 to the year. In line 12, the

3.2 Creating Objects Using Constructors 99

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 99

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

argument list tells the constructor to give the value 5 to the month, 15 to
the day, and 2012 to the year. Note that no data types are given in the argu-
ment list, only the initial values for the data. The data types of the argu-
ments are specified in the API so that the client of the class knows what
data types the constructor is expecting for its arguments.

Lines 12 and 14 also illustrate that you can combine the declaration of the
object reference and instantiation of the object in a single statement.

When an object is instantiated, the JVM allocates memory to the new
object and assigns that memory location to its object reference. Figure 3.1
shows the three objects instantiated in Example 3.1.

100 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Object Reference

Object Data

independenceDay
7

4

1776

month

day

year

Object Reference

Object Data

graduationDate
5

15

2012

month

day

year

Object Reference

Object Data

defaultDate
1

1

2000

month

day

year

Figure 3.1
Three SimpleDate Objects
after Instantiation

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 100

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

It’s important to understand that an object reference and the object data
are different: The object reference represents the memory location, and the
object data are the data stored at that memory location. Notice in Figure
3.1 that the object references, independenceDay, graduationDate, and
defaultDate, point to the locations of the object data.

3.3 Calling Methods
Once an object is instantiated, we can use the object by calling its methods.
As we mentioned earlier, the authors of classes publish their API so that their
clients know what methods are available and how to call those methods.

Figure 3.2 illustrates how calling a class method alters the flow of control in
your program. When this program starts running, the JVM executes
instruction 1, then instruction 2, then it encounters a method call. At that

3.3 Calling Methods 101

�

Do not forget to instantiate
all objects that your pro-
gram needs. Objects must
be instantiated before they
can be used.

COMMON ERROR
TRAP

Figure 3.2
Flow of Control of a
Method CallInstruction 1

Program

Method
Instruction 2

Method
instruction 1

Method
instruction 2

Method
instruction m

Method Call

Instruction n

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 101

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

point, the JVM transfers control to the method and starts executing
instructions in the method. When the method finishes executing, the JVM
transfers control back to the program immediately after the point the
method was called and continues executing instructions in the program.

A class API consists of the class method names, their return values, and
their argument lists. The argument list for a method indicates the order
and number of arguments to send to the method, along with the data type
of each argument. Each item in the argument list consists of a data type and
a name. The arguments can be literals, constants, variables, or any expres-
sion that evaluates to the data type specified in the API of the method. For
example, the API in Table 3.1 shows that the setMonth method takes one
argument, which must evaluate to an integer value.

A method may or may not return a value, as indicated by a data type, class
type, or the keyword void in front of the method name. If the method
returns a value, then the data type or class type of its return value will pre-
cede the method’s name. For instance, in Table 3.1, the getDay method
returns an integer value. The call to a value-returning method will be used
in an expression. When the method finishes executing, its return value will
replace the method call in the expression. If the keyword void precedes the
method name, the method does not return a value. Because methods with
a void return type have no value, they cannot be used in an expression;
instead, a method call to a method with a void return type is a complete
statement. In Table 3.1, the setYear method is a void method.

Another keyword you will see preceding the method call in an API is public.
This keyword means that any client of the class can call this method. If the
keyword private precedes the method name, only other methods of that
class can call that method. Although we will not formally include the public
keyword in the API, all the methods we discuss in this chapter are public.

To call a method for an object of a class, we use dot notation, as follows:

objectReference.methodName(arg1, arg2, arg3, . . .)

The object reference is followed immediately by a dot (a period), which is
followed immediately by the method name. (Later in the chapter, when we
call static methods, we will substitute the class name for the object refer-
ence.) The arguments for the method are enclosed in parentheses.

Let’s look again at the methods of the SimpleDate class. The first three
methods in the SimpleDate class API take an empty argument list and
return an int; thus, those methods have a return value of type int. You can

102 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 102

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

call these methods in any expression in your program where you could use
an int. The value of the first method, getMonth(), is the value of the month
in the object. Similarly, the value of getDay() is the value of the day in the
object, and the value of getYear() is the value of the year. These “get” meth-
ods are formally called accessor methods; they enable clients to access the
value of the instance variables of an object.

The next three methods in the SimpleDate class API take one argument of
type int and do not return a value, which is indicated by the keyword void.
These methods are called in standalone statements. The first method, set-
Month(int mm), changes the value of the month in the object to the value
of the method’s argument, mm. Similarly, setDay(int dd) changes the value
of the day in the object, and setYear(int yy) changes the value of the year in
the object to the value of the method’s argument. These “set” methods are
formally called mutator methods; they enable a client to change the value
of the instance variables of an object.

Example 3.2 illustrates how to use some of the methods of the SimpleDate
class. Line 10 calls the getMonth method for the independenceDay object.
When line 10 is executed, control transfers to the getMonth method. When
the getMonth method finishes executing, the value it returns (7) replaces
the method call in the statement. The statement then effectively becomes:

int independenceMonth = 7;

In lines 15–16, we print the value of the day in the graduationDate object.
Again, control transfers to the getDay method, then its return value (15)
replaces the method call. So the statement effectively becomes:

System.out.println(“The current day for graduation is “
+ 15);

Line 18 calls the setDay method, which is used to change the value of the day
for an object. The setDay method takes one int argument and has a void
return value. Line 18 is a complete statement, because the method call to a
method with a void return value is a complete statement. The method
changes the value of the day in the graduationDate object, which we illustrate
in lines 19–20 by printing the new value as shown in Figure 3.3. Then, on line
22, we instantiate another object, currentDay, with a day, month, and year of
9, 30, 2008, which we demonstrate by printing the values returned by calls to
the getDay, getMonth, and getYear methods. On line 28, we call the nextDay
method, which has a void return value, and increments the date to the next
day, and then we print the new values of the currentDay object.

3.3 Calling Methods 103

�

When calling a method
that takes no arguments,
remember to include the
empty parentheses after
the method’s name.The
parentheses are required
even if there are no
arguments.

COMMON ERROR
TRAP

�

When calling a method,
include only values or
expressions in your argu-
ment list. Including data
types in your argument list
will cause a compiler error.

COMMON ERROR
TRAP

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 103

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

1 /* A demonstration of calling methods
2 Anderson, Franceschi
3 */
4
5 public class Methods
6 {
7 public static void main(String [] args)
8 {
9 SimpleDate independenceDay = new SimpleDate(7, 4, 1776);
10 int independenceMonth = independenceDay.getMonth();
11 System.out.println(“Independence day is in month “
12 + independenceMonth);
13
14 SimpleDate graduationDate = new SimpleDate(5, 15, 2008);
15 System.out.println(“The current day for graduation is “
16 + graduationDate.getDay());
17
18 graduationDate.setDay(12);
19 System.out.println(“The revised day for graduation is “
20 + graduationDate.getDay());
21
22 SimpleDate currentDay = new SimpleDate(9, 30, 2008);
23 System.out.println(“The current day is “
24 + currentDay.getMonth() + ‘/’
25 + currentDay.getDay() + ‘/’
26 + currentDay.getYear());
27
28 currentDay.nextDay();
29 System.out.println(“The next day is “
30 + currentDay.getMonth() + ‘/’
31 + currentDay.getDay() + ‘/’
32 + currentDay.getYear());
33 }
34 }

EXAMPLE 3.2 Calling Methods

104 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.3
Output of Example 3.2 Independence day is in month 7

The current day for graduation is 15
The revised day for graduation is 12
The current day is 9/30/2008
The next day is 10/1/2008

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 104

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

For now, we’ll postpone discussion of the last two methods in the class API,
toString and equals, except to say that their functions, respectively, are to
convert the object data to a printable format and to compare the object
data to another object’s data. All classes provide these methods.

3.4 Using Object References 105

3.19.1 Multiple Choice Exercises

Questions 2, 3, 4, 5, 9, 10

3.19.8 Technical Writing

Questions 69, 70

Skill Practice
with these end-of-chapter questions

3.4 Using Object References
As we have mentioned, an object reference points to the data of an object.
The object reference and the object data are distinct entities. Any object can
have more than one object reference pointing to it, or an object can have no
object references pointing to it.

In Example 3.3, two SimpleDate object references, hireDate and promotion-
Date, are declared and their objects are instantiated at lines 9 and 14. Lines
10–12 and 15–18 output the respective data member values of hireDate and
promotionDate. Then, line 20 uses the assignment operator to copy the
object reference hireDate to the object reference promotionDate. After line
20, both object references have the same value and therefore point to the
location of the same object, as shown in Figure 3.4. The second object, with
values (9, 28, 2007), no longer has an object reference pointing to it and is
now marked for garbage collection. The garbage collector, which is part
of the Java Virtual Machine, releases the memory allocated to objects that

Figure 3.4
Two Object References
Pointing to the Same
Object

Object Reference

Object Data

hireDate

Object Reference

promotionDate
2

15

2007

month

day

year

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 105

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

no longer have an object reference pointing to them. Lines 23–25 and
26–29 output the respective data member values of hireDate and promo-
tionDate again. These are now identical, as shown in Figure 3.5.

1 /* A demonstration of object reference assignment
2 Anderson, Franceschi
3 */
4
5 public class ObjectReferenceAssignment
6 {
7 public static void main(String [] args)
8 {
9 SimpleDate hireDate = new SimpleDate(2, 15, 2007);
10 System.out.println(“hireDate is “ + hireDate.getMonth()
11 + “/” + hireDate.getDay()
12 + “/” + hireDate.getYear());
13
14 SimpleDate promotionDate = new SimpleDate(9, 28, 2007);
15 System.out.println(“promotionDate is “
16 + promotionDate.getMonth()
17 + “/” + promotionDate.getDay()
18 + “/” + promotionDate.getYear());
19
20 promotionDate = hireDate;
21 System.out.println(“\nAfter assigning hireDate “
22 + “to promotionDate:”);
23 System.out.println(“hireDate is “ + hireDate.getMonth()
24 + “/” + hireDate.getDay()
25 + “/” + hireDate.getYear());
26 System.out.println(“promotionDate is “
27 + promotionDate.getMonth()
28 + “/” + promotionDate.getDay()
29 + “/” + promotionDate.getYear());
30 }
31 }

EXAMPLE 3.3 Demonstrating Object Reference Assignments

When an object reference is first declared, but has not yet been assigned to
an object, its value is a special literal value, null.

If you attempt to call a method using an object reference whose value is
null, Java generates either a compiler error or a run-time error called an

106 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 106

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.4 Using Object References 107

Figure 3.5
Output of Example 3.3hireDate is 2/15/2007

promotionDate is 9/28/2007

After assigning hireDate to promotionDate:
hireDate is 2/15/2007
promotionDate is 2/15/2007

Figure 3.6
Compiler error from
Example 3.4

NullReference.java:10: variable aDate might not have been initialized
aDate.setMonth(5);
^

1 error

exception. The exception is a NullPointerException and results in a series of
messages printed on the Java console indicating where in the program the
null object reference was used. Line 10 of Example 3.4 will generate a com-
piler error, as shown in Figure 3.6, because aDate has not been instantiated.

1 /* A demonstration of trying to use a null object reference
2 Anderson, Franceschi
3 */
4
5 public class NullReference
6 {
7 public static void main(String [] args)
8 {
9 SimpleDate aDate;
10 aDate.setMonth(5);
11 }
12 }

EXAMPLE 3.4 Attempting to Use a null Object Reference

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 107

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

108 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Java does not provide support for explicitly deleting an object. One way to
indicate to the garbage collector that your program is finished with an
object is to set its object reference to null. Obviously, once an object refer-
ence has the value null, it can no longer be used to call methods.

1 /* A demonstration of trying to use a null object reference
2 Anderson, Franceschi
3 */
4
5 public class NullReference2
6 {
7 public static void main(String [] args)
8 {
9 SimpleDate independenceDay = new SimpleDate(7, 4, 1776);
10 System.out.println(“The month of independenceDay is “
11 + independenceDay.getMonth());
12
13 independenceDay = null; // set object reference to null
14 // attempt to use object reference
15 System.out.println(“The month of independenceDay is “
16 + independenceDay.getMonth());
17 }
18 }

EXAMPLE 3.5 Another Attempt to Use a null Object Reference

Example 3.5 shows a NullPointerException being generated at run time.
Line 9 instantiates the independenceDay object, and lines 10–11 print the
month. Line 13 assigns null to the object reference and lines 15–16 attempt
to print the month again. As Figure 3.7 shows, a NullPointerException is
generated. Notice that the console message indicates the name of the appli-
cation class (NullReference2), the method main, and the line number 15,
where the exception occurred. The JVM often prints additional lines in the
message, depending on where in your program the error occurred.

�

Using a null object refer-
ence to call a method will
generate either a compiler
error or a NullPointerExcep-
tion at run time. Be sure to
instantiate an object
before attempting to use
the object reference.

COMMON ERROR
TRAP

Figure 3.7
Output of Example 3.5

The month of independenceDay is 7
Exception in thread "main" java.lang.NullPointerException

at NullReference2.main(NullReference2.java:15)

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 108

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.5 Programming Activity 1: Calling Methods 109

Figure 3.8 shows the independenceDay object reference and object data
after setting the object reference to null.

3.5 Programming Activity 1: Calling Methods
Let’s put this all together with a sample program that uses a SimpleDate
object. In this Programming Activity, we’ll use a program that displays the
values of the object data as you instantiate the object and call the methods
of the class.

In the Chapter 3 Programming Activity 1 folder on the CD-ROM accom-
panying this book, you will find three source files: SimpleDate.java, Simple-
DateClient.java, and Pause.java. Copy all the .java and .class files to a
directory on your computer. Note that all files should be in the same direc-
tory.

Open the SimpleDateClient.java source file. You’ll notice that the class
already contains some source code. Your job is to fill in the blanks. Search
for five asterisks in a row (*****). This will position you to the places in the
source code where you will add your code. This section of code is shown in
Figure 3.9.

Notice that line 15 is a declaration of a SimpleDate object reference,
dateObj. You will use this object reference for instantiating an object and
for calling the methods of the SimpleDate class.

In the source file, you should see nine commented lines that instruct you to
instantiate the object or call a method. You will also notice that there are
eight lines that look like this:

// animate(“message”);

Figure 3.8
The independenceDay
Object Reference Set
to null

Object Reference

Object Data
independenceDay

null

7

4

1776

month

day

year

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 109

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

110 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.9
Partial Listing of Simple-
DateClient.java

13 private int animationPause = 2; // 2 seconds between animations
14
15 SimpleDate dateObj; // declare Date object reference
16
17 public void workWithDates()
18 {
19 animate(“dateObj reference declared”);
20
21 /***** Add your code here *****/
22 /**** 1. Instantiate dateObj using an empty argument list */
23
24
25 //animate(“Instantiated dateObj - empty argument list”);
26
27 /***** 2. Set the month to the month you were born */
28
29
30 //animate(“Set month to birth month”);
31
32
33 /***** 3. Set the day to the day of the month you were born */
34
35
36 //animate(“Set day to birth day”);
37
38
39 /***** 4. Set the year to the year you were born */
40
41
42 //animate(“Set year to birth year”);
43
44
45 /***** 5. Call the nextDay method */
46
47
48 //animate(“Set the date to the next day”);
49
50
51 /***** 6. Set the day to 32, an illegal value */
52
53
54 //animate(“Set day to 32”);
55
56
57 /***** 7. Set the month to 13, an illegal value */
58
59
60 //animate(“Set month to 13”);
61
62
63 /***** 8. Assign the value null to dateObj */
64
65
66 //animate(“Set object reference to null”);
67
68
69 /***** 9. Attempt to set the month to 1 */
70
71 }

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 110

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

These lines are calls to an animate method in this class that displays the
object reference and the object data after you have executed your code. The
message is a String literal that describes what action your code just took.
The animate method will display the message, as well as the object data.
Note that when you call a method in the same class, you don’t use an object
reference and dot notation.

To complete the Programming Activity, write the requested code on the
line between the numbered instruction and the animate method call. Then
uncomment (remove the two slashes from) the animate method call.

For example, after you’ve written the code for the first instruction, lines 22
through 25 should look like this. The line you write is shown in bold.

/* 1. Instantiate a dateObj using empty argument list */

dateObj = new SimpleDate();
animate(“Instantiated dateObj - empty argument list”);

Compile and run the code and you will see a window that looks like the one
in Figure 3.10.

As you can see, the dateObj reference points to the SimpleDate object, and
the month, day, and year instance variables have been assigned default
values.

3.5 Programming Activity 1: Calling Methods 111

Figure 3.10
Programming Activity 1
Output

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 111

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Write the code for the remaining instructions, compiling and running the
program after completing each task. The program will display the changes
you make to the object data.

The pause between animations is set by default to two seconds. To change
the pause time, change the value assigned to animationPause on line 13 to
the number of seconds you would like to pause between animations.

112 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

DISCUSSION QUESTIONS
1. After instructions 6 and 7 have executed, why do the day and month values get

set to 1?

2. At the end of the execution of the program, a NullPointerException is generated.
Which statement in the program causes this error? Explain why.

?

3.6 The Java Class Library
Java provides more than 2,000 predefined classes that you can use to add
functionality to your program. In this chapter, we’ll discuss a few com-
monly used Java classes:

� String, which provides a data type for character strings, along with
methods for searching and manipulating strings

� Random, which generates random numbers

� Scanner, which provides methods for reading input from the Java
console

� System and PrintStream, which provide data members and meth-
ods for printing data on the Java console

� DecimalFormat and NumberFormat, which allow you to format
numbers for output

� Math, which provides methods for performing mathematical
operations

� Object wrappers, which provide an object equivalent to primitive
data types so they can be used in your program as if they were
objects

� JOptionPane, which allows you to use dialog boxes to display mes-
sages to the user or to get input from the user

The Java classes are arranged in packages, grouped according to function-
ality.

4963X_CH03_Anderson.qxd 10/27/07 2:57 AM Page 112

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Table 3.2 describes some of the Java packages that we will cover in this
book. You can find more details on these classes on Sun Microsystems’ Java
website http://java.sun.com.

Many of the commonly used classes, such as String and Math, reside in the
java.lang package. Any class in the java.lang package is automatically avail-
able to your program.

To use a class that is not in the java.lang package, you need to tell the com-
piler in which package the class resides; in other words, you need to tell the
compiler where to find the class definition. To do this, you include an
import statement in your program. The import statement is inserted at the
top of the program after your introductory comments, but before the class
statement that begins the program. (Yes, we’ve defined classes already in
the programs we wrote in the previous two chapters.)

For example, if you want to use the DecimalFormat class to format a float-
ing-point number for output, you would import the DecimalFormat class
from the java.text package as follows:

import java.text.DecimalFormat;

If you’re using more than one class from a package, you can import the
whole package by using an asterisk in place of the class name, as follows:

import java.text.*;

3.6 The Java Class Library 113

TABLE 3.2 Commonly Used Java Packages

Package Categories of Classes

java.lang Basic functionality common to many programs, such as the String class,
Math class, and object wrappers for the primitive data types

java.awt Graphics classes for drawing and using colors, and old-style user interface
components

javax.swing New-style user interface components that have a consistent look and feel
across platforms

java.text Classes for formatting numeric output

java.util the Scanner class, the Random class, and other miscellaneous classes

java.io Classes for reading from and writing to files

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 113

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.7 The String Class
As we’ve discussed, Java provides the char primitive data type, which stores
one character. Almost every program, however, needs a data type that
stores more than one character. Programs need to process names,
addresses, or labels of many kinds. For example, many programs involve a
login procedure where the user has to enter a user ID and a password. The
program reads the user ID and password, compares them to values stored
in a database, and allows the user to continue only if the user ID and pass-
word match the database values.

To handle this type of data, Java provides a String class. Because the String
class is part of the java.lang package, it is automatically available to any Java
program and you do not need to use the import statement. The String class
provides several constructors, as well as a number of methods to manipu-
late, search, compare, and concatenate String objects.

Let’s look at two of the String class constructors shown in Table 3.3. Exam-
ple 3.6 shows how to use these two constructors in a program.

1 /* Demonstrating the String methods
2 Anderson, Franceschi
3 */
4 public class StringDemo
5 {
6 public static void main (String [] args)
7 {
8 String s1 = new String(“OOP in Java “);
9 System.out.println(“s1 is: “ + s1);
10 String s2 = “is not that difficult. “;
11 System.out.println(“s2 is: “ + s2);
12
13 String s3 = s1 + s2; // new String is s1, followed by s2
14 System.out.println(“s1 + s2 returns: “ + s3);
15
16 System.out.println(“s1 is still: “ + s1); // s1 is unchanged

114 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.3 String Class Constructors

String Class Constructor Summary

String(String str)

allocates a String object with the value of str, which can be a

String object or a String literal.

String()

allocates an empty String object.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 114

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

17 System.out.println(“s2 is still: “ + s2); // s2 is unchanged
18
19 String greeting1 = “Hi”; // instantiate greeting1
20 System.out.println(“\nThe length of “ + greeting1 + “ is “
21 + greeting1.length());
22
23 String greeting2 = new String(“Hello”); // instantiate greeting2
24 int len = greeting2.length(); // len will be assigned 5
25 System.out.println(“The length of “ + greeting2 + “ is “ + len);
26
27 String empty = new String();
28 System.out.println(“The length of the empty String is “
29 + empty.length());
30
31 String greeting2Upper = greeting2.toUpperCase();
32 System.out.println();
33 System.out.println(greeting2 + “ converted to upper case is “
34 + greeting2Upper);
35
36 String invertedName = “Lincoln, Abraham”;
37
38 int comma = invertedName.indexOf(‘,’); // find the comma
39 System.out.println(“\nThe index of “ + ‘,’ + “ in “
40 + invertedName + “ is “ + comma);
41
42 // extract all characters up to comma
43 String lastName = invertedName.substring(0, comma);
44 System.out.println(“Dear Mr. “ + lastName);
45 }
46 }

EXAMPLE 3.6 Demonstrating String Methods

When this program runs, it will produce the output shown in Figure 3.11.

3.7 The String Class 115

Figure 3.11
Output from Example 3.6s1 is: OOP in Java

s2 is: is not that difficult.
s1 + s2 returns: OOP in Java is not that difficult.
s1 is still: OOP in Java
s2 is still: is not that difficult.

The length of Hi is 2
The length of Hello is 5
The length of the empty String is 0

Hello converted to upper case is HELLO

The index of , in Lincoln, Abraham is 7
Dear Mr. Lincoln

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 115

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The first constructor

String(String str)

allocates a String object and sets its value to the sequence of characters in
the argument str, which can be a String object or a String literal. Line 8
instantiates the String s1 and sets its value to “OOP in Java”. Similarly, line
23 instantiates a String named greeting2, and assigns it the value “Hello”.

The second constructor

String()

creates an empty String, in other words, a String containing no characters.
You can add characters to the String later. This constructor will come in
handy in programs where we build up our output, piece by piece. Line 27
uses the second constructor to instantiate an empty String named empty.

Additionally, because Strings are used so frequently in programs, Java pro-
vides special support for instantiating String objects without explicitly
using the new operator. We can simply assign a String literal to a String
object reference. Lines 10 and 19 assign String literals to the s2 and greeting1
String references.

Java also provides special support for appending a String to the end of
another String through the concatenation operator (+) and the shortcut
version of the concatenation operator (+=). This concept is illustrated in
Example 3.6. Lines 8–11 declare, instantiate, and print two String objects,
s1 and s2. Line 13 concatenates s1 and s2 and the resulting String is assigned
to the s3 String reference, which is printed at line 14. Finally, we output s1
and s2 again at lines 16 and 17 to illustrate that their values have not
changed.

Note that the String concatenation operator is the same character as the
addition arithmetic operator. In some cases, we need to make clear to the
compiler which operator we want to use. For example, this statement uses
both the String concatenation operator and the addition arithmetic operator:

System.out.println(“The sum of 1 and 2 is “ + (1 + 2));

Notice that we put 1 + 2 inside parentheses to let the compiler know that
we want to add two ints using the addition arithmetic operator (+). The
addition will be performed first because of the higher operator precedence
of parentheses. Then it will become clear to the compiler that the other +

116 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 116

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

operator is intended to be a String concatenation operator because its
operands are a String and an int.

Some useful methods of the String class are summarized in Table 3.4.

The length Method

The length method returns the number of characters in a String. Some-
times, the number of characters in a user ID is limited, for example, to
eight, and this method is useful to ensure that the length of the ID does not
exceed the limit.

3.7 The String Class 117

TABLE 3.4 String Methods

String Class Method Summary

Return value Method name and argument list

int length()

returns the length of the String

String toUpperCase()

converts all letters in the String to uppercase

String toLowerCase()

converts all letters in the String to lowercase

char charAt(int index)

returns the character at the position specified by index

int indexOf(String searchString)

returns the index of the beginning of the first occurrence of search-
String or –1 if searchString is not found

int indexOf(char searchChar)

returns the index of the first occurrence of searchChar in the String or
–1 if searchChar is not found

String substring(int startIndex, int endIndex)

returns a substring of the String object beginning at the character at
index startIndex and ending at the character at index endIndex – 1

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 117

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The length method is called using a String object reference and the dot
operator, as illustrated in lines 21, 24, and 29 of Example 3.6. At lines 21
and 29, the length method is called inside an output statement and the
respective return values from the length method are output. At line 24, we
call the length method for the greeting2 object and assign the return value
to the int variable len. Then at line 25, we output the value of the variable
len. As shown in Figure 3.11, the length of “Hi” is 2, the length of “Hello” is
5, and the length of the empty String is 0.

The toUpperCase and toLowerCase Methods

The toUpperCase method converts all the letters in a String to uppercase,
while the toLowerCase method converts all the letters in a String to lower-
case. Digits and special characters are unchanged.

At line 31 of Example 3.6, the toUpperCase method is called using the
object reference greeting2, and the return value is assigned to a String
named greeting2Upper, which is then printed at lines 33 and 34.

The indexOf Methods

The indexOf methods are useful for searching a String to see if specific
Strings or characters are in the String. The methods return the location of
the first occurrence of a single char or the first character of a String.

The location, or index, of any character in a String is counted from the first
position in the String, which has the index value of 0. Thus in this String,

String greeting = “Ciao”;

the C is at index 0; the i is at index 1; the a is at index 2; and the o is at index
3. Because indexes begin at 0, the maximum index in a String is 1 less than
the number of characters in the String. So the maximum index for greeting
is greeting.length()–1, which is 3.

In Example 3.6, line 38 retrieves the index of the first comma in the String
invertedName and assigns it to the int variable comma; the value of comma,
here 7, is then output at lines 39 and 40.

The charAt and substring Methods

The charAt and substring methods are useful for extracting either a single
char or a group of characters from a String.

118 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 118

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The charAt method returns the character at a particular index in a String.
One of the uses of this method is for extracting just the first character of a
String, which might be advantageous when prompting the user for an
answer to a question. For example, we might ask users if they want to play
again. They can answer “y,”“yes,” or “you bet!”

Our only concern is whether the first character is a y, so we could use this
method to put the first character of their answer into a char variable.
Assuming the user’s answer was previously assigned to a String variable
named answerString, we would use the following statement to extract the
first character of answerString:

char answerChar = answerString.charAt(0);

In Chapter 5, we’ll see how to test whether answerChar is a y.

The substring method returns a group of characters, or substring, from a
String. The original String is unchanged. As arguments to the substring
method, you specify the index at which to start extracting the characters
and the index of the first character not to extract. Thus, the endIndex argu-
ment is one position past the last character to extract. We know this sounds
a little awkward, but setting up the arguments this way actually makes the
method easier to use, as we will demonstrate.

In Example 3.6, we want to extract the last name in the String inverted-
Name. Line 38 finds the index of the comma and assigns it to the int vari-
able comma, then line 43 extracts the substring from the first character
(index 0) to the index of the comma (which conveniently won’t extract the
comma), and assigns it to the String variable lastName. When the variable
lastName is output at line 44, its value is Lincoln, as shown in Figure 3.11.

When you are calculating indexes and the number of characters to extract,
be careful not to specify an index that is not in the String, because that will
generate a run-time error, StringIndexOutOfBoundsException.

3.8 Formatting Output with the DecimalFormat Class
In a computer program, numbers represent a real-life entity, for instance, a
price or a winning percentage. Floating-point numbers, however, are calcu-
lated to many decimal places and, as a result of some computations, can
end up with more significant digits than our programs need. For example,
the price of an item after a discount could look like 3.466666666666666,

3.8 Formatting Output with the DecimalFormat Class 119

�

Specifying a negative start
index or a start index past
the last character of the
String will generate a
StringIndexOutOfBounds-
Exception. Specifying a
negative end index or an
end index greater than the
length of the String will
also generate a String-
IndexOutOfBounds-
Exception.

COMMON ERROR
TRAP

�
You can read more about
the String class on Sun
Microsystems’ Java web-
site http://java.sun.com.

REFERENCE POINT

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 119

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

when all we really want to display is $3.47; that is, with a leading dollar sign
and two significant digits after the decimal point. The DecimalFormat class
allows you to specify the number of digits to display after the decimal point
and to add dollar signs, commas, and percentage signs (%) to your output.

The DecimalFormat class is part of the java.text package, so to use the Dec-
imalFormat class, you should include the following import statement in
your program:

import java.text.DecimalFormat;

We can instantiate a DecimalFormat object using a simple constructor that
takes a String object as an argument. This String object represents how we
want our formatted number to look when it’s printed. The API for that
constructor is shown in Table 3.5.

The pattern that we use to instantiate the DecimalFormat object consists of
special characters and symbols and creates a “picture” of how we want the
number to look when printed. Some of the more commonly used symbols
and their meanings are listed in Table 3.6.

1 /* Demonstrating the DecimalFormat class
2 Anderson, Franceschi
3 */
4
5 // import the DecimalFormat class from the java.text package;
6 import java.text.DecimalFormat;
7

120 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.5 A DecimalFormat Constructor and the format Method

DecimalFormat Class Constructor

DecimalFormat(String pattern)

instantiates a DecimalFormat object with the output pattern specified in the argument.

The format Method

Return value Method name and argument list

String format(double number)

returns a String representation of number formatted according to the
DecimalFormat object used to call the method.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 120

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

8 public class DemoDecimalFormat
9 {
10 public static void main(String [] args)
11 {
12 // first, instantiate a DecimalFormat object specifying a
13 // pattern for currency
14 DecimalFormat pricePattern = new DecimalFormat(“$#0.00”);
15
16 double price1 = 78.66666666;
17 double price2 = 34.5;
18 double price3 = .3333333;
19 int price4 = 3;
20 double price5 = 100.23;
21
22 // then print the values using the pattern
23 System.out.println(“The first price is: “
24 + pricePattern.format(price1));
25 System.out.println(“\nThe second price is: “
26 + pricePattern.format(price2));
27 System.out.println(“\nThe third price is: “
28 + pricePattern.format(price3));
29 System.out.println(“\nThe fourth price is: “
30 + pricePattern.format(price4));
31 System.out.println(“\nThe fifth price is: “
32 + pricePattern.format(price5));
33
34 // instantiate another new DecimalFormat object

3.8 Formatting Output with the DecimalFormat Class 121

TABLE 3.6 Special Characters for DecimalFormat Patterns

Common Pattern Symbols for a DecimalFormat Object

Symbol Meaning

0 Required digit. Do not suppress 0’s in this position.

Optional digit. Do not print a leading or terminating digit that is 0.

. Decimal point.

, Comma separator.

$ Dollar sign.

% Multiply by 100 and display a percentage sign.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 121

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

35 // for printing percentages
36 DecimalFormat percentPattern = new DecimalFormat(“#0.0%”);
37
38 double average = .980;
39 System.out.println(“\nThe average is: “
40 + percentPattern.format(average));
41 // notice that the average is multiplied by 100
42 // to print a percentage.
43
44
45 // now instantiate another new DecimalFormat object
46 // for printing time as two digits
47 DecimalFormat timePattern = new DecimalFormat(“00”);
48
49 int hours = 5, minutes = 12, seconds = 0;
50 System.out.println(“\nThe time is “
51 + timePattern.format(hours) + “:”
52 + timePattern.format(minutes) + “:”
53 + timePattern.format(seconds));
54
55 // now instantiate another DecimalFormat object
56 // for printing numbers in the millions.
57 DecimalFormat bigNumber = new DecimalFormat(“#,###”);
58
59 int millions = 1234567;
60 System.out.println(“\nmillions is “
61 + bigNumber.format(millions));
62 }
63 }

EXAMPLE 3.7 Demonstrating the DecimalFormat Class

Once we have instantiated a DecimalFormat object, we format a number by
passing it as an argument to the format method, shown in Table 3.5. Exam-
ple 3.7 demonstrates the use of the DecimalFormat patterns and calling the
format method. The output for this program is shown in Figure 3.12.

In Example 3.7, line 14 instantiates the DecimalFormat object, pricePattern,
which will be used to print prices. In the pattern

“$#0.00”

the first character of this pattern is the dollar sign ($), which we want to
precede the price. The # character specifies that leading zeroes should not
be printed. The 0 specifies that there should be at least one digit to the left
of the decimal point. If there is no value to the left of the decimal point,

122 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 122

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

then print a zero. The two 0’s that follow the decimal point specify that two
digits should be printed to the right of the decimal point; that is, if more
than two digits are to the right of the decimal point, round to two digits; if
the last digit is a 0, print the zero, and if there is no fractional part to the
number, print two zeroes. Using this pattern, we see that in lines 23–24,
price1 is rounded to two decimal places. In lines 25–26, price2 is printed
with a zero in the second decimal place.

In lines 29–30, we print price4, which is an integer. The format method API
calls for a double as the argument; however, because all numeric data types
can be promoted to a double, any numeric data type can be sent as an argu-
ment. The result is that two zeroes are added to the right of the decimal
point.

Finally, we use the pricePattern pattern to print price5 in lines 31–32, which
needs no rounding or padding of extra digits.

Next, line 36 instantiates a DecimalFormat object, percentPattern, for print-
ing percentages to one decimal point (“#0.0%”). Lines 38–40 define the vari-
able average, then print it using the format method. Notice that the format
method automatically multiplies the value of average by 100.

3.8 Formatting Output with the DecimalFormat Class 123

Figure 3.12
Output from Example 3.7The first price is: $78.67

The second price is: $34.50

The third price is: $0.33

The fourth price is: $3.00

The fifth price is: $100.23

The average is: 98.0%

The time is 05:12:00

millions is 1,234,567

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 123

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Line 47 defines another pattern, “00”, which is useful for printing the time
with colons between the hour, minutes, and seconds. When the time is
printed on lines 50–53, the hours, minutes, and seconds are padded with a
leading zero, if necessary.

Line 57 defines our last pattern, “#,###”, which can be used to insert com-
mas into integer values in the thousands and above. Lines 60–61 print the
variable millions with commas separating the millions and thousands dig-
its. Notice that the pattern is extrapolated for a number that has more digits
than the pattern.

3.9 Generating Random Numbers with the Random Class
Random numbers come in handy for many operations in a program, such
as rolling dice, dealing cards, timing the appearance of a nemesis in a game,
or other simulations of seemingly random events.

There’s one problem in using random numbers in programs, however:
Computers are deterministic. In essence, this means that given a specific
input to a specific set of instructions, a computer will always produce the
same output. The challenge, then, is generating random numbers while
using a deterministic system. Many talented computer scientists have
worked on this problem, and some innovative and complex solutions have
been proposed.

The Random class, which is in the java.util package, uses a mathematical
formula to generate a sequence of numbers, feeding the formula a seed
value, which determines where in that sequence the set of random numbers
will begin. As such, the Random class generates numbers that appear to be,
but are not truly, random. These numbers are called pseudorandom num-
bers, and they work just fine for our purposes.

Table 3.7 shows a constructor for the Random class and a method for
retrieving a random integer. The default constructor creates a random
number generator using a seed value. Once the random number generator
is created, we can ask for a random number by calling the nextInt method.
Other methods, nextDouble, nextBoolean, nextByte, and nextLong, which
are not shown in Table 3.7, return a random double, boolean, byte, or long
value, respectively.

To demonstrate how to use the random number generator, let’s take rolling
a die as an example. To simulate the roll of a six-sided die, we need to

124 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

�
You can read more about
the DecimalFormat class
on Sun Microsystems’
Java website
http://java.sun.com.

REFERENCE POINT

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 124

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

simulate random occurrences of the numbers 1 through 6. If we call the
nextInt method with an argument of 6, it will return an integer between 0
and 5. To get randomly distributed numbers from 1 to 6, we can simply add
1 to the value returned by the nextInt method. Thus, if we have instantiated
a Random object named random, we can generate random numbers from 1
to 6, by calling the nextInt method in this way:

int die = random.nextInt(6) + 1;

In general, then, if we want to generate random numbers from n to m, we
should call the nextInt method with the number of random values we need
(m – n + 1), and then add the first value of our sequence (n) to the returned
value. Thus, this statement generates a random number between 10 and
100 inclusive:

int randomNumber = random.nextInt(100 - 10 + 1) + 10;

Line 18 of Example 3.8 will generate a random number between 20 and 200
inclusive.

1 /* A demonstration of the Random class
2 Anderson, Franceschi
3 */
4 import java.util.Random;
5
6 public class RandomNumbers
7 {
8 public static void main(String [] args)

3.9 Generating Random Numbers with the Random Class 125

TABLE 3.7 A Random Class Constructor and the nextInt Method

Random Class Constructor

Random()

Creates a random number generator.

The nextInt Method

Return value Method name and argument list

int nextInt(int number)

returns a random integer ranging from 0 up to, but not including, number
in uniform distribution

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 125

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

When the RandomNumbers program executes, it will produce output simi-
lar to the window shown in Figure 3.13. The output will vary from one exe-
cution of the program to the next because different random numbers will
be generated.

3.10 Input from the Console Using the Scanner Class
As our programs become more complex, we will need to allow the users of
our programs to input data. User input can be read into your program in
several ways:

� from the Java console

� from a dialog box

� from a file

� through a Graphical User Interface (GUI)

The Java class library provides classes for all types of data input. In this
chapter, we will concentrate on two ways to input data: from the Java con-
sole and from a dialog box. In Chapter 6 and Chapter 11, we explore how to

126 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.13
Output from Example 3.8

The die roll is 2

The random number between 20 and 200 is 117

�
You can read more about
the Random class on Sun
Microsystems’ Java website
http://java.sun.com.

REFERENCE POINT

9 {
10 Random random = new Random();
11
12 // simulate the roll of a die

13 int die = random.nextInt(6) + 1;
14 System.out.println(“\nThe die roll is “ + die);
15
16 // generate a random number between 20 and 200
17 int start = 20, end = 200;
18 int number = random.nextInt(end - start + 1) + start;
19 System.out.println(“\nThe random number between “ + start
20 + “ and “ + end + “ is “ + number);
21 }
22 }

EXAMPLE 3.8 A Demonstration of the Random Class

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 126

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

input data from a file, and in Chapter 12, we learn how to input data
through a GUI.

The Scanner class provides methods for reading byte, short, int, long, float,
double, and String data types from the Java console. These methods are
shown in Table 3.8.

3.10 Input from the Console Using the Scanner Class 127

TABLE 3.8 Selected Methods of the Scanner Class

A Scanner Class Constructor

Scanner(InputStream dataSource)

creates a Scanner object that will read from the InputStream dataSource. To read from the
keyboard, we will use the predefined InputStream System.in.

Selected Methods of the Scanner Class

Return value Method name and argument list

byte nextByte()

returns the next input as a byte

short nextShort()

returns the next input as a short

int nextInt()

returns the next input as an int

long nextLong()

returns the next input as a long

float nextFloat()

returns the next input as a float

double nextDouble()

returns the next input as a double

boolean nextBoolean()

returns the next input as a boolean

String next()

returns the next token in the input line as a String

String nextLine()

returns the input line as a String

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 127

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The Scanner class is defined in the java.util package, so your programs will
need to include the following import statement:

import java.util.Scanner;

In order to use the Scanner class, you must first instantiate a Scanner object
and associate it with a data source. We will use the System.in input stream,
which by default is tied to the keyboard. Thus, our data source for input
will be System.in. The following statement will instantiate a Scanner object
named scan and associate System.in as the data source.

Scanner scan = new Scanner(System.in);

Once the Scanner object has been instantiated, you can use it to call any of
the next. . . methods to input data from the Java console. The specific
next. . . method you call depends on the type of input you want from the
user. Each of the next. . . methods returns a value from the input stream.
You will need to assign the return value from the next. . . methods to a
variable to complete the data input. Obviously, the data type of the vari-
able must match the data type of the value returned by the next. . .
method.

The next. . . methods just perform input. They do not tell the user what
data to enter. Before calling any of the next methods, therefore, you need to
prompt the user for the input you want. You can print a prompt using Sys-
tem.out.print, which is similar to using System.out.println, except that the
cursor remains after the printed text, rather than advancing to the next line.

When writing a prompt for user input, keep several things in mind. First,
be specific. If you want the user to enter his or her full name, then your
prompt should say just that:

Please enter your first and last names.

If the input should fall within a range of values, then tell the user which
values will be valid:

Please enter an integer between 0 and 10.

Also keep in mind that users are typically not programmers. It’s important
to phrase a prompt using language the user understands. Many times, pro-
grammers write a prompt from their point of view, as in this bad prompt:

Please enter a String:

128 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 128

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Users don’t know, and don’t care, about Strings or any other data types, for
that matter. Users want to know only what they need to enter to get the
program to do its job.

When your prompts are clear and specific, the user makes fewer errors and
therefore feels more comfortable using your program.

Line 13 of Example 3.9 prompts the user to enter his or her first name. Line
14 captures the user input and assigns the word entered by the user to the
String variable firstName, which is printed in line 15. Similarly, line 17
prompts for the user’s age; line 18 captures the integer entered by the user
and assigns it to the int variable age, and line 19 outputs the value of age.
Reading other primitive data types follows the same pattern. Line 21
prompts for the user’s grade point average (a float value). Line 22 captures
the number entered by the user and assigns it to the float variable gpa, and
line 23 outputs the value of gpa.

1 /* A demonstration of reading from the console using Scanner
2 Anderson, Franceschi
3 */
4
5 import java.util.Scanner;
6
7 public class DataInput
8 {
9 public static void main(String [] args)
10 {
11 Scanner scan = new Scanner(System.in);
12
13 System.out.print(“Enter your first name > “);
14 String firstName = scan.next();
15 System.out.println(“Your name is “ + firstName);
16
17 System.out.print(“\nEnter your age as an integer > “);
18 int age = scan.nextInt();
19 System.out.println(“Your age is “ + age);
20
21 System.out.print(“\nEnter your GPA > “);
22 float gpa = scan.nextFloat();
23 System.out.println(“Your GPA is “ + gpa);
24 }
25 }

EXAMPLE 3.9 Reading from the Console using Scanner

3.10 Input from the Console Using the Scanner Class 129

�

Provide the user with clear
prompts for input. Prompts
should be phrased using
words the user under-
stands and should describe
the data requested and any
restrictions on valid input
values.

SOFTWARE
ENGINEERING TIP

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 129

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

When this program executes, the prompt is printed on the console and the
cursor remains at the end of the prompt. Figure 3.14 shows the output
when these statements are executed and the user enters Syed, presses Enter,
enters 21, presses Enter, and enters 3.875, and presses Enter again.

The methods nextByte, nextShort, nextLong, nextDouble, and nextBoolean
can be used with the same pattern as next, nextInt, and nextFloat.

Note that we end our prompt with a space, an angle bracket, and another
space. The angle bracket indicates that we are waiting for input, and the
spaces separate the prompt from the input. Without the trailing space, the
user’s input would immediately follow the prompt, which is more difficult
to read, as you can see in Figure 3.15.

As you review Table 3.8, you may notice that the Scanner class does not pro-
vide a method for reading a single character. To do this, we can use the next
method, which returns a String, then extract the first character from the
String using the charAt(0) method call, as shown in Example 3.10. Line 14
inputs a String from the user and assigns it to the String variable initialS,
then line 15 assigns the first character of initialS to the char variable initial;
initial is then output at line 16 as shown in Figure 3.16.

130 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.14
Data Input with Example
3.9

Enter your first name > Syed
Your name is Syed

Enter your age as an integer > 21
Your age is 21

Enter your GPA > 3.875
Your GPA is 3.875

�

End your prompts with
some indication that input
is expected, and include a
trailing space for better
readability.

SOFTWARE
ENGINEERING TIP

Figure 3.15
Prompt and Input
Running Together

Enter your age as an integer >21

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 130

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

A Scanner object divides its input into sequences of characters called
tokens, using delimiters. The default delimiters are the standard white-
space characters, which among others include the space, tab, and newline
characters. The complete set of Java whitespace characters is shown in
Table 3.9.

By default, when a Scanner object tokenizes the input, it skips leading
whitespace, then builds a token composed of all subsequent characters
until it encounters another delimiter. Thus, if you have this code,

System.out.print(“Enter your age as an integer > “);
int age = scan.nextInt();

and the user types, for example, three spaces and a tab, 21, and a newline:

<space><space><space><tab>21<newline>

3.10 Input from the Console Using the Scanner Class 131

Figure 3.16
Output of Example 3.10Enter your middle initial > A

Your middle initial is A

1 /* A demonstration of how to get character input using Scanner
2 Anderson, Franceschi
3 */
4
5 import java.util.Scanner;
6
7 public class CharacterInput
8 {
9 public static void main(String [] args)
10 {
11 Scanner scan = new Scanner(System.in);
12
13 System.out.print(“Enter your middle initial > “);
14 String initialS = scan.next();
15 char initial = initialS.charAt(0);
16 System.out.println(“Your middle initial is “ + initial);
17 }
18 }

EXAMPLE 3.10 Using Scanner for Character Input

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 131

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

then the Scanner object skips the three spaces and the tab, starts building a
token with the character 2, then adds the character 1 to the token, and stops
building the token when it encounters the newline. Thus, 21 is the resulting
token, which the nextInt method returns into the age variable.

An input line can contain more than one token. For example, if we prompt
the user for his or her name and age, and the user enters the following line,
then presses Enter:

<tab>Jon<space>Olsen,<space>21<space>

then, the leading whitespace is skipped and the Scanner object creates three
tokens:

� Jon

� Olsen,

� 21

Note that commas are not whitespace, so the comma is actually part of the
second token. To input these three tokens, your program would use two
calls to the next method to retrieve the two String tokens and a call to next-
Int to retrieve the age.

To capture a complete line of input from the user, we use the method
nextLine. Example 3.11 shows how nextLine can be used in a program. Fig-
ure 3.17 shows a sample run of the program with the user entering data.

132 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.9 Java Whitespace Characters

Character Unicode equivalents

space \u00A0,\u2007,\u202F

tab \u0009,\u000B

line feed \u000A

form feed \u000C

carriage return \u000D

file, group, unit, and \u001C,\u001D,\u001E,\u001F
record separators

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 132

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

If the user’s input (that is, the next token) does not match the data type of
the next. . . method call, then an InputMismatchException is generated and
the program stops. Figure 3.18 demonstrates Example 3.9 when the pro-
gram calls the nextInt method and the user enters a letter, rather than an

3.10 Input from the Console Using the Scanner Class 133

Figure 3.17
Output of Example 3.11Enter a sentence > Scanner is useful.

You said: "Scanner is useful."

�
You can read more about
the Scanner class on Sun
Microsystems’ Java web-
site: http://java.sun.com.

REFERENCE POINT

Figure 3.18
An Exception When Input
Is Not the Expected Data
Type

Enter your first name > Sarah
Your name is Sarah

Enter your age as an integer > a
Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at DataInput.main(DataInput.java:18)

1 /* A demonstration of using Scanner’s nextLine method
2 Anderson, Franceschi
3 */
4
5 import java.util.Scanner;
6
7 public class InputALine
8 {
9 public static void main(String [] args)
10 {
11 Scanner scan = new Scanner(System.in);
12
13 System.out.print(“Enter a sentence > “);
14 String sentence = scan.nextLine();
15 System.out.println(“You said: \“” + sentence + “\“”);
16 }
17 }

EXAMPLE 3.11 Using the nextLine Method

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 133

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

integer. In Chapter 6, we show you how to avoid this exception, and in
Chapter 11, we show you how to intercept the exception and recover from
it.

If the user doesn’t type anything when prompted, or if the user types some
characters but doesn’t press Enter, the program will simply wait until the
user does press Enter.

134 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

3.19.1 Multiple Choice Exercises

Questions 1, 11

3.19.2 Reading and Understanding Code

Questions 14, 15, 16

3.19.3 Fill In the Code

Questions 24, 25, 26, 27

3.19.4 Identifying Errors in Code

Questions 36, 37, 38, 39, 43

3.19.5 Debugging Area

Questions 45, 49

3.19.6 Write a Short Program

Questions 50, 51, 52

Skill Practice
with these end-of-chapter questions

3.11 Calling Static Methods and Using Static Class Variables
Classes can also define static methods, which can be called without instan-
tiating an object. These are also called class methods. The API of these
methods has the keyword static before the return type:

static dataType methodName(arg1, arg2, . . .)

One reason a class may define static methods is to provide some quick, one-
time functionality without requiring the client to instantiate an object. For
example, dialog boxes typically pop up only once in a program. Creating an

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 134

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

object for a dialog box, when it is used only once, is a waste of memory and
processor time. We’ll see later in this chapter how it’s possible to create dia-
log boxes and to perform mathematical calculations without creating an
object.

Class, or static, methods are invoked using the class name, rather than an
object reference, as in the following syntax:

ClassName.staticMethodName(argumentList);

For example, in this statement:

absValue = Math.abs(someNumber);

the class name is Math, and the static method is abs, which returns the
absolute value of the argument (someNumber). We use the class name
rather than an object reference, because static methods can be called with-
out instantiating an object. Later in this chapter, we will explore some static
methods of the Math class in greater detail.

Because static methods can be called without an object being instantiated,
static methods cannot access the instance variables of the class (because
instance variables are object data and exist only after an object has been
instantiated). Static methods can access static data, however, and classes
often declare static data to be used with static methods. Static data belong to
the class, rather than to a particular object, or instance, of the class.

A common use of static class variables is to define constants for commonly
used values or for parameters for the static class methods. For example, as
we’ll discuss in Chapter 4, the Color class provides static constants that can
be assigned to a Color object reference.

Like static methods, static constants are also accessed using the class name
and dot operator, as in this syntax:

ClassName.staticConstant

Thus, the static constant representing the color blue can be accessed this
way:

Color.BLUE

At first, this may appear to go against our earlier discussion of encapsula-
tion and the restrictions on clients directly accessing object data. Remem-
ber we said that the client needed to use accessor (“gets”) and mutator
(“sets”) methods to access object data. The reasoning behind encapsulation
is to protect the object data from corruption by the client. However, in this

3.11 Calling Static Methods and Using Static Class Variables 135

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 135

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

case, the static data is constant, so the client is unable to change it. For the
client, directly accessing the class constant is easier and faster than calling a
method.

3.12 Using System.in and System.out
In order to print program output to the screen, we have been using state-
ments like

System.out.println(“The value of b is “ + b);

and

System.out.print(“Enter your first name > “);

And to instantiate a Scanner object, we used this statement:

Scanner scan = new Scanner(System.in);

It is now time to look at these statements in depth and understand them
completely.

System is an existing Java class in the java.lang package. One of its fields is a
static constant, out, which represents the Java console by default. Another of
its fields is a static constant, in, which represents the keyboard by default.
Because in and out are static, we refer to them using the class name, System,
and the dot notation:

System.out
System.in

Table 3.10 shows these static constants as well as the static exit method,
which can be used to terminate a program. Calling System.exit() at the end
of a program is optional. After the last instruction is executed, the program
will end in any case. However, the exit method of the System class can be
useful if you want to stop execution at a place other than the end of the
program.

System.out is an object of the PrintStream class, which is also an existing
Java class; it can be found in the java.io package. The out object refers to the
standard output device, which by default is the Java console.

The methods print and println belong to the PrintStream class and take
arguments of any primitive type, a String, or an object reference. The only

136 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 136

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.12 Using System.in and System.out 137

TABLE 3.10 Static Constants of the System Class and the exit Method

Constant Value

in static constant that represents the standard input stream, by default
the keyboard

out static constant that represents the standard output stream, by
default the Java console

A Useful System Method

Return value Method name and argument list

void exit(int exitStatus)

static method that terminates the Java Virtual Machine. A value of 0
for exitStatus indicates a normal termination. Any other values indi-
cate abnormal termination and are used to signal that the program
ended because an error occurred.

TABLE 3.11 PrintStream Methods for Use with System.out

Useful PrintStream Methods

Return value Method name and argument list

void print(argument)

prints argument to the standard output device.The argument can be
any primitive data type, a String object, or another object reference.

void println(argument)

prints argument to the standard output device, then prints a new-
line character.The argument can be any primitive data type, a String,
or another object reference.

void println()

prints a newline character.This method is useful for skipping a line
in the program’s output.

difference between print and println is that println will also print a newline
character after it writes the output. Table 3.11 shows some methods of the
PrintStream class, which can be used with System.out.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 137

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Example 3.12 demonstrates various ways to use the print and println
methods:

1 /* Testing the print and println methods
2 Anderson, Franceschi
3 */
4
5 public class PrintDemo
6 {
7 public static void main(String [] args)
8 {
9 System.out.println(“Combine the arguments using concatenation”);
10 System.out.println(“A double: “ + 23.7 + “, and an int: “ + 78);
11
12 System.out.print(“\nJava is case sensitive: “);
13 System.out.println(‘a’ + “ is different from “ + ‘A’);
14
15 System.out.println(“\nCreate a variable and print its value”);
16 String s = new String(“The grade is”);
17 double grade = 3.81;
18 System.out.println(s + “ “ + grade);
19
20 System.out.println(); // skip a line
21 SimpleDate d = new SimpleDate(4, 5, 2009);
22 System.out.println(“Explicitly calling toString, d is “
23 + d.toString());
24 System.out.println(“Implicitly calling toString, d is “ + d);
25
26 System.exit(0); // optional
27 }
28 }

EXAMPLE 3.12 Demonstrating the print and println Methods

Lines 10 and 13 show how print or println can be used with various data
types such as double, int, and char. Variables and expressions can also be
used instead of literals, as shown in line 18, where the String s and the dou-
ble variable grade are output.

We can also print objects. All classes have a toString method, which con-
verts the object data to a String for printing. The toString method is called
automatically whenever an object is used as a String. Notice that our Sim-
pleDate class, introduced earlier in the chapter, had a toString method that
returned the object data as a String in the format mm/dd/yyyy.

138 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 138

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The toString method’s API is

String toString()

After the SimpleDate object reference d is instantiated at line 21, it is
printed at lines 22–23 and again at line 24. At lines 22–23, the method
toString is called explicitly; at line 24, it is called automatically. The output
of Example 3.12 is shown in Figure 3.19. Finally, we terminate the program
by calling the exit method of the System class.

3.13 The Math Class
The Math class is also part of the java.lang package. As such, it is automati-
cally available to any Java program; you do not need to use the import state-
ment. The Math class provides two static constants (E and PI), as well as a
number of static methods that save the programmer from writing some
complex mathematical code.

The two constants, E and PI, are both doubles and represent, respectively, e
(the base of the natural logarithm, i.e., log e = 1) and pi, the ratio of the cir-
cumference of a circle to its diameter. Approximate values of e and pi, as we
know them, are 2.78 and 3.14, respectively. These constants are shown in
Table 3.12.

Because E and PI are static data members of the Math class, they are refer-
enced using the name of the Math class and the dot notation as follows:

Math.E
Math.PI

3.13 The Math Class 139

�
You can read more about
the System and PrintStream
classes on Sun Micro-
systems’ Java website
http://java.sun.com.

REFERENCE POINT

Figure 3.19
The Output from Example
3.12

Combine the arguments using concatenation
A double: 23.7, and an int: 78

Java is case sensitive: a is different from A

Create a variable and print its value
The grade is 3.81

Explicitly calling toString, d is 4/5/2009
Implicitly calling toString, d is 4/5/2009

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 139

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Useful methods of the Math class are shown in Table 3.13. All the methods
of the Math class are static; so they are called using the class name, Math,
and the dot notation as follows:

Math.abs(-5)

140 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.12 Static Constants of the Math Class

Constant Value

E e, the base of the natural logarithm

PI pi, the ratio of the circumference of a circle to its diameter

TABLE 3.13 Useful Methods of the Math Class

Math Class Method Summary

Return value Method name and argument list

dataTypeOfArg abs(arg)

static method that returns the absolute value of the argument arg,
which can be a double, float, int, or long.

double log(double a)

static method that returns the natural logarithm (in base e) of its argu-
ment, a. For example, log(1) returns 0 and log(Math.E) returns 1.

dataTypeOfArgs min(argA, argB)

static method that returns the smaller of the two arguments.The argu-
ments can be doubles, floats, ints, or longs.

dataTypeOfArgs max(argA, argB)

static method that returns the larger of the two arguments.The argu-
ments can be doubles, floats, ints, or longs.

double pow(double base, double exp)

static method that returns the value of base raised to the exp power.

long round(double a)

static method that returns the closest integer to its argument, a.

double sqrt(double a)

static method that returns the positive square root of a.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 140

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The operation and usefulness of most Math class methods are obvious. But
several methods—pow, round, and min/max—require a little explanation.

3.13 The Math Class 141

Figure 3.20
Output from Example
3.13

The value of e is 2.718281828459045
The value of pi is 3.141592653589793

The absolute value of 6.7 is 6.7

The absolute value of -6.7 is 6.7

Example 3.13 demonstrates how the Math constants and the abs method
can be used in a Java program. In lines 9 and 10, we print the values of e and
pi using the static constants of the Math class. Then in lines 12 and 15, we
call the abs method, which returns the absolute value of its argument. We
then print the results in lines 13 and 16. The output of Example 3.13 is
shown in Figure 3.20.

1 /* A demonstration of the Math class methods and constants
2 Anderson, Franceschi
3 */
4
5 public class MathConstants
6 {
7 public static void main(String [] args)
8 {
9 System.out.println(“The value of e is “ + Math.E);
10 System.out.println(“The value of pi is “ + Math.PI);
11
12 double d1 = Math.abs(6.7); // d1 will be assigned 6.7
13 System.out.println(“\nThe absolute value of 6.7 is “ + d1);
14
15 double d2 = Math.abs(-6.7); // d2 will be assigned 6.7
16 System.out.println(“\nThe absolute value of -6.7 is “ + d2);
17 }
18 }

EXAMPLE 3.13 Math Class Constants and the abs Method

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 141

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The pow Method

Example 3.14 demonstrates how some of these Math methods can be used
in a Java program.

1 /* A demonstration of some Math class methods
2 Anderson, Franceschi
3 */
4
5 public class MathMethods
6 {
7 public static void main(String [] args)
8 {
9 double d2 = Math.log(5);
10 System.out.println(“\nThe log of 5 is “ + d2);
11
12 double d4 = Math.sqrt(9);
13 System.out.println(“\nThe square root of 9 is “ + d4);
14
15 double fourCubed = Math.pow(4, 3);
16 System.out.println(“\n4 to the power 3 is “ + fourCubed);
17
18 double bigNumber = Math.pow(43.5, 3.4);
19 System.out.println(“\n43.5 to the power 3.4 is “ + bigNumber);
20 }
21 }

EXAMPLE 3.14 A Demonstration of Some Math Class Methods

The Math class provides the pow method for raising a number to a power.
The pow method takes two arguments, the first is the base and the second is
the exponent.

Although the argument list for the pow method specifies that the base and
the exponent are both doubles, you can, in fact, send arguments of any
numeric type to the pow method because all numeric types can be pro-
moted to a double. No matter what type the arguments are, however, the
return value is always a double. Thus, when line 15 calls the pow method
with two integer arguments, the value of fourCubed will be 64.0. If you pre-
fer that the return value be 64, you can cast the return value to an int.

Line 18 shows how to use the pow method with arguments of type double.
The output of Example 3.14 is shown in Figure 3.21.

142 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 142

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The round Method

The round method converts a double to its nearest integer using these rules:

� any factional part .0 to .4 is rounded down

� any fractional part .5 and above is rounded up

Lines 9–13 in Example 3.15 use the round method with various numbers.
Figure 3.22 shows the output.

1 /* A demonstration of the Math round method
2 Anderson, Franceschi
3 */
4
5 public class MathRounding
6 {
7 public static void main(String [] args)
8 {
9 System.out.println(“23.4 rounded is “ + Math.round(23.4));
10 System.out.println(“23.49 rounded is “ + Math.round(23.49));
11 System.out.println(“23.5 rounded is “ + Math.round(23.5));
12 System.out.println(“23.51 rounded is “ + Math.round(23.51));
13 System.out.println(“23.6 rounded is “ + Math.round(23.6));
14 }
15 }

EXAMPLE 3.15 A Demonstration of the Math round method

3.13 The Math Class 143

Figure 3.21
Output from Example
3.14

The log of 5 is 1.6094379124341003

The square root of 9 is 3.0

4 to the power 3 is 64.0

43.5 to the power 3.4 is 372274.65827529586

Figure 3.22
Output from Example
3.15

23.4 rounded is 23
23.49 rounded is 23
23.5 rounded is 24
23.51 rounded is 24
23.6 rounded is 24

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 143

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The min and max Methods

The min and max methods return the smaller or larger of their two argu-
ments, respectively. Example 3.16 demonstrates how the min and max
methods can be used in a Java program. Figure 3.23 shows the output. Thus
the statement on line 9 of Example 3.16

int smaller = Math.min(8, 2);

will assign 2 to the int variable smaller. At line 12, a similar statement using
the max method will assign 8 to the int variable larger.

1 /* A demonstration of min and max Math class methods
2 Anderson, Franceschi
3 */
4
5 public class MathMinMaxMethods
6 {
7 public static void main(String [] args)
8 {
9 int smaller = Math.min(8, 2);
10 System.out.println(“The smaller of 8 and 2 is “ + smaller);
11
12 int larger = Math.max(8, 2);
13 System.out.println(“The larger of 8 and 2 is “ + larger);
14
15 int a = 8, b = 5, c = 12;
16 int tempSmaller = Math.min(a, b); // find smaller of a & b
17 int smallest = Math.min(tempSmaller, c); // compare result to c
18 System.out.println(“The smallest of “ + a + “, “ + b + “, and “
19 + c + “ is “ + smallest);
20 }
21 }

EXAMPLE 3.16 A Demonstration of the min and max Methods

144 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.23
Output from Example
3.16

The smaller of 8 and 2 is 2
The larger of 8 and 2 is 8
The smallest of 8, 5, and 12 is 5

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 144

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

The min method can also be used to compute the smallest of three vari-
ables. After declaring and initializing the three variables (a, b, and c) at line
15, we assign to a temporary variable named tempSmaller the smaller of the
first two variables, a and b, at line 16. Then, at line 17, we compute the
smaller of tempSmaller and the third variable, c, and assign that value to the
int variable smallest, which is output at lines 18 and 19.

The pattern for finding the largest of three numbers is similar, and we leave
that as an exercise at the end of the chapter.

3.13 The Math Class 145

�
You can read more about
the Math class on Sun
Microsystems’ Java website
http://java.sun.com.

REFERENCE POINT

3.19.1 Multiple Choice Exercises

Questions 6, 7, 8, 13

3.19.2 Reading and Understanding Code

Questions 17, 18, 19, 20, 21, 22, 23

3.19.3 Fill In the Code

Questions 28, 29, 30, 31, 32, 34

3.19.4 Identifying Errors in Code

Questions 40, 41, 42

3.19.5 Debugging Area

Questions 46, 47, 48

3.19.6 Write a Short Program

Questions 53, 54

Skill Practice
with these end-of-chapter questions

To see a step-by step illustration of how to instantiate an object and call both instance and static
methods, look for the Chapter 3 Flash movie on the CD accompanying this book. Click on the link for
Chapter 3 to view the movie.

CODE IN ACTION

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 145

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.14 Formatting Output with the NumberFormat Class
Like the DecimalFormat class, the NumberFormat class can also be used to
format numbers for output. The NumberFormat class, however, provides
specialized static methods for creating objects specifically for formatting
currency and percentages.

The NumberFormat class is part of the java.text package, so you need to
include the following import statement at the top of your program.

import java.text.NumberFormat;

The static methods of the NumberFormat class to format currency and per-
centages are shown in Table 3.14.

As you can see from the first two method headers, their return type is a
NumberFormat object. These static methods, called factory methods, are
used instead of constructors to create objects. Thus, instead of using the
new keyword and a constructor, we will call one of these methods to create
our formatting object.

The getCurrencyInstance method returns a formatting object that reflects
the local currency. In the United States, that format is a leading dollar sign
and two digits to the right of the decimal place. The getPercentInstance
method returns a formatting object that prints a fraction as a percentage by
multiplying the fraction by 100, rounding to the nearest whole percent, and
adding a percent sign (%).

146 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.14 Useful Methods of the NumberFormat Class

NumberFormat Method Summary

Return value Method name and argument list

NumberFormat getCurrencyInstance()

static method that creates a format object for money.

NumberFormat getPercentInstance()

static method that creates a format object for percentages.

String format(double number)

returns a String representation of number formatted according to the
object used to call the method.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 146

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

We then use the format method from the NumberFormat class to display a
value either as money or a percentage. The format method takes one argu-
ment, which is the variable or value that we want to print; it returns the
formatted version of the value as a String object, which we can then print.

Example 3.17 is a complete program illustrating how to use these three
methods.

1 /* Demonstration of currency and percentage formatting
2 using the NumberFormat class.
3 Anderson, Franceschi
4 */
5
6 // we need to import the NumberFormat class from java.text
7 import java.text.NumberFormat;
8
9 public class DemoNumberFormat
10 {
11 public static void main(String [] args)
12 {
13 double winningPercentage = .675;
14 double price = 78.9;
15
16 // get a NumberFormat object for printing a percentage
17 NumberFormat percentFormat = NumberFormat.getPercentInstance();
18
19 // call format method using the NumberFormat object
20 System.out.print(“The winning percentage is “);
21 System.out.println(percentFormat.format(winningPercentage));
22
23 // get a NumberFormat object for printing currency
24 NumberFormat priceFormat = NumberFormat.getCurrencyInstance();
25
26 // call format method using the NumberFormat object
27 System.out.println(“\nThe price is: “
28 + priceFormat.format(price));
29 }
30 }

EXAMPLE 3.17 Demonstrating the NumberFormat Class

The output of this program is shown in Figure 3.24.

3.14 Formatting Output with the NumberFormat Class 147

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 147

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.15 The Integer, Double, and Other Wrapper Classes
In Chapter 2, we discussed primitive data types and how they can be used
in a program. In this chapter, we’ve discussed classes and class methods and
how useful and convenient classes are in representing and encapsulating
data into objects.

Most programs use a combination of primitive data types and objects.
Some class methods, however, will accept only objects as arguments, so we
need some way to convert a primitive data type into an object. Conversely,
there are times when we need to convert an object into a primitive data
type. For example, let’s say we have a Graphical User Interface where we ask
users to type their age into a text box or a dialog box. We expect the age to
be an int value; however, text boxes and dialog boxes return their values as
Strings. To perform any calculations on an age in our program, we will need
to convert the value of that String object into an int.

For these situations, Java provides wrapper classes. A wrapper class
“wraps” the value of a primitive type, such as double or int, into an object.
These wrapper classes define an instance variable of that primitive data
type, and also provide useful constants and methods for converting
between the objects and the primitive data types. Table 3.15 lists the wrap-
per classes for each primitive data type.

All these classes are part of the java.lang package. So, the import statement
is not needed in order to use them in a program.

To convert a primitive int variable to an Integer wrapper object, we can
instantiate the Integer object using the Integer constructor.

int intPrimitive = 42;
Integer integerObject = new Integer(intPrimitive);

However, because this is a common operation, Java provides special sup-
port for converting between a primitive numeric type and its wrapper class.
Instead of using the Integer constructor, we can simply assign the int vari-

148 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.24
Output from Example
3.17

The winning percentage is 68%

The price is: $78.90

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 148

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

able to an Integer object reference. Java will automatically provide the con-
version for us. This conversion is called autoboxing. In Example 3.18, the
conversion is illustrated in lines 9 and 10. The int variable, intPrimitive, and
the Integer object, integerObject, are output at lines 12 and 13 and have the
same value (42). The output is shown in Figure 3.25.

Similarly, when an Integer object is used as an int, Java also provides this
conversion, which is called unboxing. Thus, when we use an Integer object
in an arithmetic expression, the int value is automatically used. Line 15 of
Example 3.18 uses the Integer object integerObject in an arithmetic expres-
sion, adding the Integer object to the int variable intPrimitive. As shown in
Figure 3.25, the result is the same as if both operands were int variables.

Similar operations are possible using other numeric primitives and their
associated wrapper classes.

In addition to automatic conversions between primitive types and wrapper
objects, the Integer and Double classes provide methods, shown in Table
3.16, that allow us to convert between primitive types and objects of the
String class.

The parseInt, parseDouble, and valueOf methods are static and are called
using the Integer or Double class name and the dot notation. The parse
methods convert a String to a primitive type, and the valueOf methods con-
vert a String to a wrapper object. For example, line 18 of Example 3.18 con-
verts the String “76” to the int value 76. Line 19 converts the String “76” to
an Integer object.

3.15 The Integer, Double, and Other Wrapper Classes 149

TABLE 3.15 Wrapper Classes for Primitive Data Types

Primitive Data Type Wrapper Class

double Double

float Float

long Long

int Integer

short Short

byte Byte

char Character

boolean Boolean

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 149

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

1 /* A demonstration of the Wrapper classes and methods
2 Anderson, Franceschi
3 */
4
5 public class DemoWrapper
6 {
7 public static void main(String [] args)
8 {
9 int intPrimitive = 42;
10 Integer integerObject = intPrimitive;
11
12 System.out.println(“The int is “ + intPrimitive);
13 System.out.println(“The Integer object is “ + integerObject);
14
15 int sum = intPrimitive + integerObject;
16 System.out.println(“The sum is “ + sum);
17
18 int i1 = Integer.parseInt(“76”); // convert “76” to an int
19 Integer i2 = Integer.valueOf(“76”); // convert “76” to Integer
20 System.out.println(“\nThe value of i1 is “ + i1);
21 System.out.println(“The value of i2 is “ + i2);
22
23 double d1 = Double.parseDouble(“58.32”);
24 Double d2 = Double.valueOf(“58.32”);
25 System.out.println(“\nThe value of d1 is “ + d1);
26 System.out.println(“The value of d2 is “ + d2);
27 }
28 }

EXAMPLE 3.18 A Demonstration of the Wrapper Classes

150 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

The int is 42
The Integer object is 42
The sum is 84

The value of i1 is 76
The value of i2 is 76

The value of d1 is 58.32
The value of d2 is 58.32

Figure 3.25
Output from Example
3.18

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 150

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Similarly, line 23 converts the String “58.32” to a double, and line 24 con-
verts the same String to a Double object.

The usefulness of these wrappers will become clear in the next section of
this chapter, where we discuss dialog boxes.

3.16 Input and Output Using JOptionPane Dialog Boxes
Java provides the JOptionPane class for creating dialog boxes—those famil-
iar pop-up windows that prompt the user to enter a value or notify the user
of an error. The JOptionPane class is in the javax.swing package, so you will
need to provide an import statement in any program that uses a dialog box.

3.16 Input and Output Using JOptionPane Dialog Boxes 151

TABLE 3.16 Methods of the Integer and Double Wrapper Classes

Useful Methods of the Integer Wrapper Class

Return value Method name and argument list

int parseInt(String s)

static method that converts the String s to an int and returns that value

Integer valueOf(String s)

static method that converts the String s to an Integer object and returns
that object

Useful Methods of the Double Wrapper Class

Return value Method name and argument list

double parseDouble(String s)

static method that converts the String s to a double and returns that value

Double valueOf(String s)

static method that converts the String s to a Double object and returns that
object

�
You can read more about
the wrapper classes on Sun
Microsystems’ Java website
http://java.sun.com.

REFERENCE POINT

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 151

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Most classes in the javax.swing package are designed for GUIs, but JOption-
Pane dialog boxes can be used in both GUI and non-GUI programs.

Table 3.17 lists some useful JOptionPane static methods.

The showInputDialog method is used for input, that is, for prompting the
user for a value and inputting that value into the program. The showMes-
sageDialog method is used for output, that is, for printing a message to the
user. Although Java provides several constructors for dialog boxes, it is cus-
tomary to create dialog boxes that will be used only once using the static
methods and the JOptionPane class name.

Let’s look first at the method showInputDialog, which gets input from the
user. It takes two arguments: a parent component object and a prompt to
display. At this point, our applications won’t have a parent component
object, so we’ll always use null for that argument.

The second argument, the prompt, is usually a String, and lets the user
know what kind of input our program needs. Next, notice that the return
value of the showInputDialog method is a String.

Example 3.19 shows how the showInputDialog method is used to retrieve
user input through a dialog box.

1 /* Using dialog boxes for input and output of Strings
2 Anderson, Franceschi
3 */
4
5 import javax.swing.JOptionPane;
6
7 public class DialogBoxDemo1

152 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

TABLE 3.17 Input and Output Methods of the JOptionPane Class

Useful Methods of the JOptionPane Class

Return value Method name and argument list

String showInputDialog(Component parent, Object prompt)

static method that pops up an input dialog box, where prompt asks the
user for input. Returns the characters typed by the user as a String.

void showMessageDialog(Component parent, Object message)

static method that pops up an output dialog box with message displayed

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 152

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

8 {
9 public static void main(String [] args)
10 {
11 String name = JOptionPane.showInputDialog(null,
12 “Please enter your first and last names”);
13 JOptionPane.showMessageDialog(null, “Hello, “ + name);
14 }
15 }

EXAMPLE 3.19 Using Dialog Boxes with Strings

When lines 11 and 12 are executed, the dialog box in Figure 3.26 appears.
The user types his or her name into the white box, then presses either the
Enter key or clicks the OK button. At that time, the showInputDialog
method returns a String representing the characters typed by the user, and
that String is assigned to the variable name.

To output a message to the user, use the showMessageDialog method. The
showMessageDialog method is similar to the showInputDialog method in
that it takes a parent component object (null for now) and a String to dis-
play. Thus, in Example 3.19, line 13 uses the variable name to echo back to
the user a greeting.

Notice that because the showMessageDialog is a method with a void return
value, you call it as a standalone statement, rather than using the method
call in an expression.

If the user typed “Syed Ali” when prompted for his name, the output dialog
box shown in Figure 3.27 would appear.

To input an integer or any data type other than a String, however, you need
to convert the returned String to the desired data type. Fortunately, as we
saw in the previous section, you can do this using a wrapper class and its
associated parse method, as Example 3.20 demonstrates.

3.16 Input and Output Using JOptionPane Dialog Boxes 153

Figure 3.26
Dialog Box Prompting for
First and Last Names

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 153

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

1 /* Demonstrating dialog boxes for input and output of numbers
2 Anderson, Franceschi
3 */
4
5 import javax.swing.JOptionPane;
6
7 public class DialogBoxDemo2
8 {
9 public static void main(String [] args)
10 {
11 String input = JOptionPane.showInputDialog(null,
12 “Please enter your age in years”);
13 int age = Integer.parseInt(input);
14 JOptionPane.showMessageDialog(null, “Your age is “ + age);
15
16 double average = Double.parseDouble(
17 JOptionPane.showInputDialog(null,
18 “Enter your grade point average between 0.0 and 4.0”));
19 JOptionPane.showMessageDialog(null, “Your average is “
20 + average);
21 }
22 }

EXAMPLE 3.20 Converting Input Strings to Numbers

Lines 11 and 12 pop up an input dialog box and assign the characters
entered by the user to the String input. Line 13 uses the parseInt method of
the Integer class to convert input to an integer, which is assigned to the int
variable age. Line 14 then displays the value of age in an output dialog box.

Java programmers often combine multiple related operations into one
statement in order to type less code and to avoid declaring additional vari-
ables. Lines 16, 17, and 18 illustrate this concept. At first it may look con-
fusing, but if you look at the statement a piece at a time, it becomes clear
what is happening. The showInputDialog method is called, returning a

154 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

Figure 3.27
Output Dialog Box from
Example 3.19

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 154

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

String representing whatever the user typed into the dialog box. This String
then becomes the argument passed to parseDouble, which converts the
String to a double. Lines 19–20 display the value of average in another dia-
log box.

In this prompt, we included a range of valid values to help the user type
valid input. However, including a range of values in your prompt does not
prevent the user from entering other values. The parseDouble method will
accept any String that can be converted to a numeric value. After your pro-
gram receives the input, you will need to verify that the number entered is
indeed within the requested range of values. In Chapter 6, we will show you
techniques for verifying whether the user has entered valid values.

With either Double.parseDouble or Integer.parseInt, the value the user types
must be convertible to the appropriate data type. If not, an exception is
generated. For example, if the user enters A for the grade point average, the
method generates a NumberFormatException. We’ll discuss how you can
intercept and handle exceptions in Chapter 11.

The various input and output dialog boxes from a sample run of Example
3.20 are shown in Figure 3.28.

3.16 Input and Output Using JOptionPane Dialog Boxes 155

�
You can read more about
the JOptionPane class on
Sun Microsystems’ Java
website
http://java.sun.com.

REFERENCE POINT

Figure 3.28
Dialog Boxes from Example 3.20

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 155

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.17 Programming Activity 2: Using Predefined Classes
In this Programming Activity, you will write a short program using some of
the classes and methods discussed in this chapter. Plus, given the API of a
method of an additional class, you will determine how to call the method.
Your program will perform the following operations:

1. a. Prompt the user for his or her first name

b. Print a message saying hello to the user

c. Tell the user how many characters are in his or her name

2. a. Ask the user for the year of his or her birth

b. Calculate and print the age the user will be this year

c. Declare a constant for average life expectancy; set its value to 77.9

d. Print a message that tells the user the percentage of his or her
expected life lived so far

156 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

3.19.1 Multiple Choice Exercises

Question 12

3.19.3 Fill In the Code

Question 33

3.19.3 Identifying Errors in Code

Question 35

3.19.5 Debugging Area

Question 44

3.19.6 Write a Short Program

Questions 55, 56

3.19.8 Technical Writing

Questions 71, 72

Skill Practice
with these end-of-chapter questions

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 156

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3. a. Generate a random number between 1 and 20

b. Pop up a dialog box telling the user that the program is thinking
of a number between 1 and 20 and ask for a guess

c. Pop up a dialog box telling the user the number

To complete this Programming Activity, copy the contents of the Chapter 3
Programming Activity 2 folder on the CD-ROM accompanying this book.
Open the PracticeMethods.java file and look for four sets of five asterisks
(*****), where you will find instructions to write import statements and
items 1, 2, and 3 for completing the Programming Activity.

Example 3.21 shows the PracticeMethods.java file, and Figures 3.29 and
3.30 show the output from a sample run after you have completed the

3.16 Input and Output Using JOptionPane Dialog Boxes 157

Figure 3.29
Console Output from a
Sample Run of Program-
ming Activity 2

Enter your first name > Esmerelda
Hello Esmerelda
Your name has 9 letters

In what year were you born > 1990
This year, you will be 18
You have lived 23.1% of your life.

Figure 3.30
Dialog Boxes from a Sample Run of Programming Activity 2

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 157

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Programming Activity. Because item 3 generates a random number, your
output may be different.

158 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

1 /* Chapter 3 Programming Activity 2
2 Calling class methods
3 Anderson, Franceschi
4 */
5
6 // ***** add your import statements here
7
8 public class PracticeMethods
9 {
10 public static void main(String [] args)
11 {
12 //*****
13 // 1. a. Create a Scanner object to read from the console
14 // b. Prompt the user for his or her first name
15 // c. Print a message that says hello to the user
16 // d. Print a message that says how many letters
17 // are in the user’s name
18 // Your code goes here
19
20 //*****
21 // 2. a. Skip a line, then prompt the user for the year
22 // of birth
23 // b. Calculate and print the age the user will be this year
24 // c. Declare a constant for average life expectancy,
25 // set its value to 77.9
26 // d. Print a message that tells the user the percentage
27 // of his or her expected life lived
28 // Use the DecimalFormat class to format the percentage
29
30 //*****
31 // 3. a. Generate a random integer between 1 and 20
32 // b. Pop up an input dialog box and ask the user for a guess.
33 // c. Pop up an output dialog box telling the user the number
34 // and how far from the number the guess was (hint: use Math.abs)
35
36 }
37 }

EXAMPLE 3.21 PracticeMethods.java

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 158

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.18 Chapter Summary 159

CHAPTER SUM
M

ARY

3.18 Chapter Summary
� Object-oriented programming entails writing programs that use

classes and objects. Using prewritten classes shortens development
time and creates more reliable programs. Programs that use
prewritten classes are called clients of the class.

� Benefits of object-oriented programming include encapsulation,
reusability, and reliability.

� Classes consist of data, plus instructions that operate on that data.
Objects of a class are created using the class as a template. Creating
an object is called instantiating an object, and the object is an
instance of the class. The new keyword is used to instantiate an
object.

� The object reference is the variable name for an object and points
to the data of the object.

� The data of a class are called instance variables or fields, and the
instructions of the class are called methods. Methods of a class get
or set the values of the data or provide other services of the class.

� The name of a method, along with its argument list and return
value, is called the Application Programming Interface (API) of
that method. Methods that are declared to be public can be called
by any client of the class.

� By convention, class names in Java start with a capital letter.
Method names, instance variables, and object names start with a
lowercase letter. In all these names, embedded words begin with a
capital letter.

� When your program makes a method call, control transfers to the
instructions in the method until the method finishes executing.
Then control is transferred back to your program.

DISCUSSION QUESTIONS
1. Which methods of the Scanner class did you choose for reading the user’s name and

birth year? Explain your decisions.

2. How would you change your code to generate a random number between 10
and 20?

?

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 159

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

160 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

CH
AP

TE
R

SU
M

M
AR

Y
� Instance methods are called using the object reference and the dot

notation.

� A constructor is called when an object is instantiated. A construc-
tor has the same name as the class and its job is to initialize the
object’s data. Classes can have multiple constructors. Constructors
have no return values.

� A method’s data type is called the method’s return type. If the data
type is anything other than the keyword void, the method returns a
value to the program. When a value-returning method finishes
executing, its return value replaces the method call in the expres-
sion.

� Accessor methods, also called gets, allow clients to retrieve the cur-
rent value of object data. Mutator methods, also called sets, allow
clients to change the value of object data.

� When an object reference is first declared, its value is null. Attempt-
ing to use a null object reference to call a method generates an
error.

� The garbage collector runs occasionally and deletes objects that
have no object references pointing to them.

� Java packages are groups of classes arranged according to function-
ality. Classes in the java.lang packages are automatically available
to Java programs. Other classes need to be imported.

� The String class can be used to create objects consisting of a
sequence of characters. String constructors accept String literals,
String objects, or no argument, which creates an empty String. The
length method returns the number of characters in the String
object. The toUpperCase and toLowerCase methods return a String
in upper or lower case. The charAt method extracts a character
from a String, while the substring method extracts a String from a
String. The indexOf method searches a String for a character or
substring.

� The DecimalFormat class, in the java.text package, formats
numeric output. For example, you can specify the number of digits
to display after the decimal point or add dollar signs and percent-
age signs (%).

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 160

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.18 Chapter Summary 161

CHAPTER SUM
M

ARY
� The Random class, in the java.util package, generates random

numbers.

� The Scanner class, in the java.util package, provides methods for
reading input from the Java console. Methods are provided for
reading primitive data types and Strings.

� When prompting the user for input, phrase the prompt in lan-
guage the user understands. Describe the data requested and any
restrictions on valid input values

� Static methods, also called class methods, can be called without
instantiating an object. Static methods can access only the static
data of a class.

� Static methods are called using the class name and the dot nota-
tion.

� System.out.println prints primitive data types or a String to the Java
console and adds a newline character. System.out.println with no
argument skips a line. System.out.print prints the same data types
to the Java console, but does not add a newline. Classes provide a
toString method to convert objects to a String in order to be
printed.

� The Math class provides static constants PI and E and static meth-
ods to perform common mathematical calculations, such as find-
ing the maximum or minimum of two numbers, rounding values,
and raising a number to a power.

� The NumberFormat class, in the java.text package, provides
static methods for formatting numeric output as currency or a
percentage.

� Wrapper classes provide an object interface for a primitive data
type. The Integer and Double wrapper classes provide static meth-
ods for converting between ints and doubles and Strings.

� The JOptionPane class, in the javax.swing package, provides the
static methods showMessageDialog for popping up an output dia-
log box and showInputDialog for popping up an input dialog box.

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 161

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

3.19 Exercises, Problems, and Projects

3.19.1 Multiple Choice Exercises

1. If you want to use an existing class from the Java class library in your
program, what keyword should you use?

❑ use

❑ import

❑ export

❑ include

2. A constructor has the same name as the class name.

❑ true

❑ false

3. A given class can have more than one constructor.

❑ true

❑ false

4. What is the keyword used to instantiate an object in Java?

❑ make

❑ construct

❑ new

❑ static

5. In a given class named Quiz, there can be only one method with the
name Quiz.

❑ true

❑ false

6. A static method is

❑ a class method

❑ an instance method

7. In the Quiz class, the foo method has the following API:

public static double foo(float f)

What can you say about foo?

162 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 162

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

❑ It is an instance method.

❑ It is a class field.

❑ It is a class method.

❑ It is an instance variable.

8. In the Quiz class, the foo method has the following API:

public static void foo()

How would you call that method?

❑ Quiz.foo();

❑ Quiz.foo(8);

❑ Quiz(foo());

9. In the Quiz class, the foo method has the following API:

public double foo(int i, String s, char c)

How many arguments does foo take ?

❑ 0

❑ 1

❑ 2

❑ 3

10. In the Quiz class, the foo method has the following API:

public double foo(int i, String s, char c)

What is the return type of method foo?

❑ double

❑ int

❑ char

❑ String

11. String is a primitive data type in Java.

❑ true

❑ false

3.19 Exercises, Problems, and Projects 163

EXERCISES,PROBLEM
S,AND PROJECTS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 163

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

12. Which one of the following is not an existing wrapper class?

❑ Integer

❑ Char

❑ Float

❑ Double

13. What is the proper way of accessing the constant E of the Math class?

❑ Math.E();

❑ Math.E;

❑ E;

❑ Math(E);

3.19.2 Reading and Understanding Code

14. What is the output of this code sequence?

String s = new String(“HI”);
System.out.println(s);

15. What is the output of this code sequence?

String s = “A” + “BC” + “DEF” + “GHIJ”;
System.out.println(s);

16. What is the output of this code sequence?

String s = “Hello”;
s = s.toLowerCase();
System.out.println(s);

17. What is the output of this code sequence?

int a = Math.min(5, 8);
System.out.println(a);

18. What is the output of this code sequence?

System.out.println(Math.sqrt(4.0));

19. What is the output of this code sequence? (You will need to actually
compile this code and run it in order to have the correct output.)

System.out.println(Math.PI);

20. What is the output of this code sequence?

double f = 5.7;
long i = Math.round(f);
System.out.println(i);

164 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 164

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

21. What is the output of this code sequence?

System.out.print(Math.round(3.5));

22. What is the output of this code sequence?

int i = Math.abs(-8);
System.out.println(i);

23. What is the output of this code sequence?

double d = Math.pow(2, 3);
System.out.println(d);

3.19.3 Fill In the Code

24. This code concatenates the three Strings “Intro”, “to”, and “Program-
ming” and outputs the resulting String. (Your output should be “Intro
to Programming.”)

String s1 = “Intro “;
String s2 = “to”;
String s3 = “ Programming”;
// your code goes here

25. This code prints the number of characters in the String “Hello
World.”

String s = “Hello World”;
// your code goes here

26. This code prompts the user for a String, then prints the String and the
number of characters in it.

// your code goes here

27. This code uses only a single line System.out.println . . . statement in
order to print

“Welcome to Java Illuminated”

on one line using (and only using) the following variables:

String s1 = “Welcome “;
String s2 = “to “;
String s3 = “Java “;
String s4 = “Illuminated”;
// your code goes here

28. This code uses exactly four System.out.print statements in order to
print

“Welcome to Java Illuminated”

3.19 Exercises, Problems, and Projects 165

EXERCISES,PROBLEM
S,AND PROJECTS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 165

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

on the same output line.

// your code goes here

29. This code assigns the maximum of the values 3 and 5 to the int vari-
able i and outputs the result.

int i;
// your code goes here

30. This code calculates the square root of 5 and outputs the result.

double d = 5.0;
// your code goes here

31. This code asks the user for two integer values, then calculates the
minimum of the two values and prints it.

// your code goes here

32. This code asks the user for three integer values, then calculates the
maximum of the three values and prints it.

// your code goes here

33. This code pops up a dialog box that prompts the user for an integer,
converts the String to an int, adds 1 to the number, and pops up a dia-
log box that outputs the new value.

// your code goes here

34. This code asks the user for a double, then prints the square of this
number.

// your code goes here

3.19.4 Identifying Errors in Code

35. Where is the error in this statement?

import text.NumberFormat;

36. Where is the error in this statement?

import java.util.DecimalFormat;

37. Where is the error in this code sequence?

String s = “Hello World”;
system.out.println(s);

38. Where is the error in this code sequence?

String s = String(“Hello”);
System.out.println(s);

166 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 166

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

39. Where is the error in this code sequence?

String s1 = “Hello”;
String s2 = “ello”;
String s = s1 - s2;

40. Where is the error in this code sequence?

short s = Math.round(3.2);
System.out.println(s);

41. Where is the error in this code sequence?

int a = Math.pow(3, 4);
System.out.println(a);

42. Where is the error in this code sequence?

double pi = Math(PI);
System.out.println(pi);

43. Where is the error in this code sequence?

String s = ‘H’;

System.out.println(“s is “ + s);

3.19.5 Debugging Area—Using Messages from the Java Compiler and

Java JVM

44. You coded the following program in file Test.java:

public class Test
{
public static void main(String [] args)
{
int a = 6;
NumberFormat nf = NumberFormat.getCurrencyInstance();

}
}

When you compile, you get the following message:

Test.java: 6: cannot find symbol
symbol : class NumberFormat
location: class Test
NumberFormat nf = NumberFormat.getCurrencyInstance();
^

Test.java: 6: cannot find symbol
symbol : variable NumberFormat

3.19 Exercises, Problems, and Projects 167

EXERCISES,PROBLEM
S,AND PROJECTS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 167

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

location: class Test
NumberFormat nf = NumberFormat.getCurrencyInstance();

^
2 errors

Explain what the problem is and how to fix it.

45. You coded the following on lines 10–12 of class Test.java:

String s; // line 10
int l = s.length(); // line 11
System.out.println(“length is “ + l); // line 12

When you compile, you get the following message:

Test.java:11: variable s might not have been initialized.
int l = s.length(); // line 11

^
1 error

Explain what the problem is and how to fix it.

46. You coded the following on lines 10 and 11 of class Test.java:

double d = math.sqrt(6); // line 10
System.out.println(“d = “ + d); // line 11

When you compile, you get the following message:

Test.java: 10: cannot find symbol
symbol : variable math
location: class Test

double d = math.sqrt(6); // line 10
^

1 error

Explain what the problem is and how to fix it.

47. You coded the following on lines 10 and 11 of class Test.java:

double d = Math.PI(); // line 10
System.out.println(“d = “ + d); // line 11

When you compile, you get the following message:

Test.java:10: cannot find symbol
symbol : method PI ()
location: class java.lang.Math
double d = Math.PI(); // line 10

^
1 error

Explain what the problem is and how to fix it.

168 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 168

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

48. You coded the following on lines 10 and 11 of class Test.java:

double d = Math.e; // line 10
System.out.println(“d = “ + d); // line 11

When you compile, you get the following message:

Test.java:10: cannot find symbol
symbol : variable e
location: class java.lang.Math

double d = Math.e; // line 10
^

1 error

Explain what the problem is and how to fix it.

49. You imported the DecimalFormat class and coded the following in the
class Test.java:

double grade = .895;
DecimalFormat percent =
new DecimalFormat(“#.0%”);

System.out.println(“Your grade is “
+ grade);

The code compiles properly and runs, but the result is not what you
expected. You expect this output:

Your grade is 89.5%

But instead, the output is

Your grade is 0.895

Explain what the problem is and how to fix it.

3.19.6 Write a Short Program

50. Write a program that reads two words representing passwords from
the Java console and outputs the number of characters in the smaller
of the two. For example, if the two words are open and sesame, then
the output should be 4, the length of the shorter word, open.

51. Write a program that reads a name that represents a domain name
from the Java console. Your program should then concatenate that
name with www. and .com in order to form an Internet domain name
and output the result. For instance, if the name entered by the user is
yahoo, then the output will be www.yahoo.com.

3.19 Exercises, Problems, and Projects 169

EXERCISES,PROBLEM
S,AND PROJECTS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 169

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

52. Write a program that reads a word from the Java console. Your pro-
gram should then output the same word, output the word in upper-
case letters only, output that word in lowercase letters only, and then,
at the end, output the original word.

53. Write a program that generates two random numbers between 0 and
100 and prints the smaller of the two numbers.

54. Write a program that takes a double as an input from the Java console,
then computes and outputs the cube of that number.

55. Write a program that reads a filename from a dialog box. You should
expect that the filename has one . (dot) character in it, separating the
filename from the file extension. Retrieve the file extension and out-
put it. For instance, if the user inputs index.html, you should output
html; if the user inputs MyClass.java, you should output java.

56. Write a program that reads a full name (first name and last name)
from a dialog box; you should expect the first name and the last name
to be separated by a space. Retrieve the first name and output it.

3.19.7 Programming Projects

57. Write a program that reads three integer values from the Java console
representing, respectively, a number of quarters, dimes, and nickels.
Convert the total coin amount to dollars and output the result with a
dollar notation.

58. Write a program that reads from the Java console the radius of a cir-
cle. Calculate and output the area and the perimeter of that circle. You
can use the following formulas:

area = π * r 2

perimeter = 2 * π * r

59. Write a program that generates five random integers between 60 and
100 and calculates the smallest of the five numbers.

60. Write a program that generates three random integers between 0 and
50, calculates the average, and prints the result.

61. Write a program that reads two integers from the Java console: one
representing the number of shots taken by a basketball player, the
other representing the number of shots made by the same player.

170 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 170

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

Calculate the shooting percentage and output it with the percent
notation.

62. Write a program that takes three double numbers from the Java con-
sole representing, respectively, the three coefficients a, b, and c of a
quadratic equation. Solve the equation using the following formulas:

x1 = (�b + square root (b 2 � 4 ac)) / (2a);

x2 = (�b � square root (b 2 � 4 ac)) / (2a);

Run your program on the following sample values:

a = 1.0, b = 3.0, c = 2.0

a = 0.5, b = 0.5, c = 0.125

a = 1.0, b = 3.0, c = 10.0

Discuss the results for each program run, in particular what happens
in the last case.

63. Write a program that takes two numbers from the Java console repre-
senting, respectively, an investment and an interest rate (you will
expect the user to enter a number such as .065 for the interest rate,
representing a 6.5% interest rate). Your program should calculate and
output (in $ notation) the future value of the investment in 5, 10, and
20 years using the following formula:

future value = investment * (1 + interest rate)year

We will assume that the interest rate is an annual rate and is com-
pounded annually.

64. Write a program that reads from the Java console the (x,y) coordi-
nates for two points in the plane. You can assume that all numbers are
integers. Using the Point class from Java (you may need to look it up
on the Web), instantiate two Point objects with your input data, then
output the data for both Point objects.

65. Write a program that reads a char from the Java console. Look up the
Character class on the Web, in particular the method getNumeric-
Value. Using the getNumericValue method, find the corresponding
Unicode encoding number and output the character along with its
corresponding Unicode value. Find all the Unicode values for charac-
ters a to z and A to Z.

3.19 Exercises, Problems, and Projects 171

EXERCISES,PROBLEM
S,AND PROJECTS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 171

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

66. Write a program that reads a telephone number from a dialog box;
you should assume that the number is in this format: nnn-nnn-nnnn.
You should output this same telephone number but with spaces
instead of dashes, that is: nnn nnn nnnn.

67. Write a program that reads a sentence from a dialog box. The sen-
tence has been encrypted as follows: only the first five even-numbered
characters should be counted; all other characters should be dis-
carded. Decrypt the sentence and output the result. For example, if
the user inputs “Hiejlzl3ow”, your output should be Hello.

68. Write a program that reads a commercial website URL from a dialog
box; you should expect that the URL starts with www and ends with
.com. Retrieve the name of the site and output it. For instance, if the
user inputs www.yahoo.com, you should output yahoo.

3.19.8 Technical Writing

69. At this point, we have written and debugged many examples of code.
When you compile a Java program with the Java compiler, you get a
list of all the errors in your code. Do you like the Java compiler? Do
the error messages it displays when your code does not compile help
you determine what’s wrong?

70. Computers, computer languages, and application programs existed
before object-oriented programming. However, OOP has become an
industry standard. Discuss the advantages of using OOP compared to
using only basic data types in a program.

71. Explain and discuss a situation where you would use the method
parseInt of the class Integer.

72. In addition to the basic data types (int, float, char, boolean, . . .), Java
provides many prewritten classes, such as Math, NumberFormat, and
DecimalFormat. Why is this an advantage? How does this impact the
way a programmer approaches a programming problem in general?

3.19.9 Group Project (for a group of 1, 2, or 3 students)

73. Write a program that calculates a monthly mortgage payment; we will
assume that the interest rate is compounded monthly.

172 CHAPTER 3 Object-Oriented Programming, Part 1: Using Classes

EX
ER

CI
SE

S,
PR

OB
LE

M
S,

AN
D

PR
OJ

EC
TS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 172

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

You will need to do the following:

❑ Prompt the user for a double representing the annual interest
rate.

❑ Prompt the user for the number of years the mortgage will be
held (typical input here is 10, 15, or 30).

❑ Prompt the user for a number representing the mortgage
amount borrowed from the bank.

❑ Calculate the monthly payment using the following formulas:

� Monthly payment = (mIR * M) / (1 � (1 / (1 + mIR)(12*nOY))),
where:

� mIR = monthly interest rate = annual interest rate / 12

� nOY = number of years

� M = mortgage amount

❑ Output a summary of the mortgage problem, as follows:

� the annual interest rate in percent notation

� the mortgage amount in dollars

� the monthly payment in dollars, with only two significant
digits after the decimal point

� the total payment over the years, with only two significant
digits after the decimal point

� the overpayment, i.e., the difference between the total pay-
ment over the years and the mortgage amount, with only two
significant digits after the decimal point

� the overpayment as a percentage (in percent notation) of the
mortgage amount

3.19 Exercises, Problems, and Projects 173

EXERCISES,PROBLEM
S,AND PROJECTS

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 173

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

4963X_CH03_Anderson.qxd 10/27/07 2:58 AM Page 174

© Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION

