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CHAPTER ONE

Systems of
Linear Equations

1.1 SOLVING SYSTEMS OF LINEAR EQUATIONS

“Do not worry about your difficulties in mathematics. I can assure
you that mine are still greater.

—ALBERT EINSTEIN (1879–1955)

Begin at the beginning and go until you come to the end: then ”stop.
—LEWIS CARROLL (1832–1889),

ALICE’S ADVENTURES IN WONDERLAND

The term linear algebra applies to a branch of mathematics that studies
vectors, matrices, vector spaces, and systems of linear equations. It is hoped
that the reader has acquaintance with some of these terms. For example,
a vector with three components looks like (2:5; 3:7;−5:1), while a 2 × 3
matrix looks like this:

[
4:1 −3:2 5:4
1:3 2:0 −5:1

]

These two building blocks, vectors and matrices, can produce systems of
linear equations, and these in turn can often model an applied problem
from the real world.

1
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2 CHAPTER 1 Systems of Linear Equations

The subject of linear algebra was already being studied sporadically
in ancient times, as is known from surviving manuscripts. But the subject
blossomed in the early 1800s and thus is approximately 200 years old. It
is much younger than calculus, which was already thriving at the time of
Newton and Leibniz, in the 1700s.

In this book you will find many examples illustrating how some com-
putational problem originating in engineering, physics, finance, or eco-
nomic planning (and in other disciplines) becomes a fully understood type
of problem in linear algebra, and therefore yields easily to standard tech-
niques already available. In many cases, such problems can be solved by
means of well-tested and documented computer software.

Linear Equations

This topic is basic to much of what comes later. We begin our study by
discussing a single linear equation containing two variables.

EXAMPLE 1 Consider the equation 7x − 3y = 21, which represents a
line in the xy-plane. Where does this line cross the two axes?

SOLUTION The question is: What points of the form (x; 0) and (0; y) are
on this line? For the first point, we let y = 0, and the resulting equation is
7x = 21. Thus, we have x = 3 and the point sought is (3; 0). For the second
point, we let x = 0 and the equation now reads −3y = 21. Hence, we have
y = −7 and the point wanted is (0;−7). These points are the intercepts of
the line. See Figure 1.1.

The point–slope form of a line is

y = mx + b

where m is the slope and b is the intercept on the y-axis. From Example 1,
the line 7x− 3y = 21 can be written in the point-slope form as y = 7

3
x− 7.

EXAMPLE 2 Use the line described in Example 1. Are the points
(−3;−14), (3; 1), and (6; 7) on the line?

SOLUTION In each case, one can substitute the coordinates in the equa-
tion 7x − 3y = 21 to see whether the equation is satisfied. For the first
point, we calculate (7)(−3)− (3)(−14) = 21, for the second point (7)(3)−
(3)(1) = 18, and for the third point (7)(6) − (3)(7) = 21. Hence, the first
and third points are on the line but the second is not. See Figure 1.1.
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SECTION 1.1 Solving Systems of Linear Equations 3

q = arctan m = arctan

y = mx + b

7

3

x

y

(6, 7)

(3, 0)

(–7, 0)

(–3, –14)

q

(  ) ≈ 66.8°7
3

FIGURE 1.1 A point–slope form of a line in R
2.

For two points (x0; y0) and (x1; y1), the two-point form of the line
through these points is

y − y0 = m(x− x0) where m =
y1 − y0

x1 − x0

For example, using the two points in Example 2, we obtain the two-point
form as y − 7 = 7

3
(x− 6).

The equation discussed above is called a linear equation precisely
because its graph is a line, and the word linear derives from the word line.

We extend the meaning of a linear equation to encompass one of the
form

a1x1 + a2x2 + a3x3 + · · · + anxn = b or
n∑

j=1

ajxj = b

involving n variables. Here we have named the variables x1, x2, and so
on because we need the flexibility of handling any number of variables,
even hundreds of thousands! The variables xj may (in some contexts) also
be called unknowns. The second form of writing the equation employs
standard summation notation: the variable j runs through the integers 1
to n, and we are to take the sum of all the resulting terms, ajxj. When we
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4 CHAPTER 1 Systems of Linear Equations

use summation notation, the variable index (j in the preceding equation)
can be almost any convenient variable, such as i, j, k, �, or �. However, one
must be careful to avoid any conflict with letters already used in a different
context. For example,

∑n

i=1 xi = yi is obviously wrong!

Systems of Linear Equations

We are rarely interested in only one such equation in isolation. We usually
encounter systems of linear equations. We must stretch our notation a
little bit further and settle upon the following standard formulation. A
completely general system of m linear equations with n unknowns (or
variables) has equations of this form

ai1x1 + ai2x2 + ai3x3 + · · · + ai;n−1xn−1 + ainxn = bi (1 ≤ i ≤ m)

which is the exact form of the ith generic equation in the system. Sometimes
a comma is needed to separate the two subscripts on the letter a if it is
not clear otherwise. Each equation in the system involves the same set of
variables, x1; x2; x3; : : : ; xn. The entire system can be written succinctly with
summation notation:

n∑
j=1

aijxj = bi (1 ≤ i ≤ m)

The symbolism on the left of this equation means a sum of terms, each of
the form aijxj. The index j runs over the integer values from 1 to n. Off
to the side we see in parentheses an indication that the index i also runs
through a set of integers, in this case i = 1; 2; 3; up to and including m.
Here and elsewhere, we often expect i and j to be restricted to nonnegative
integer values.

An important concept that we will return to in Section 1.2 is the con-
sistency of systems of linear equations.

DEFINITION

A system of equations is consistent if it has at least one solution, and
inconsistent if it has no solution.

Next, we consider a system of two linear equations in two unknowns:

L1 : −x + y = 1 L2 : 2x + y = 4

These two equations correspond to two lines L1 and L2 in R
2. Adding 2

times the first equation to the second equation produces 3y = 6 or y = 2.
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SECTION 1.1 Solving Systems of Linear Equations 5

L
1

L
1
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2
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(1, 2)

(a) Unique Solution (b) No Solution (c) Infinitely Many Solutions

ˆL
1
, L

2

~

FIGURE 1.2 Different cases of two lines in R
2.

Substituting this value into the first equation reveals that x = 1. Plots of
these two lines are shown in Figure 1.2(a), and we see that they intersect at
the point (1; 2). In this case, there is exactly one solution.

Modifying the second equation, we consider the system

L1 : −x + y = 1 L̃2 : 2x− 2y = 4

Dividing the second equation by −2, we find that this pair of equations is
inconsistent, requiring that−x + y = 1 and−x + y = −2. This means that
there is no solution. As shown in Figure 1.2(b), these two lines are parallel
and therefore do not intersect at all.

Again, modifying the second equation slightly leads us to the third case:

L1 : −x + y = 1 L̂2 : 2x− 2y = −2

Dividing the second equation by−2, we find that these equations are now
duplicates of each other. Letting y = 1, we find x = 0. Letting y = 3, we have
x = 2, and so on. Giving y any value, we have x = −1 + y. Consequently,
there are infinitely many solutions in this case. As shown in Figure 1.2(c),
there is now only one line and we can think of the two equations as having
graphs that lie on top of each other.

EXAMPLE 3 A system of four equations in three unknowns is exempli-
fied by ⎧⎪⎨

⎪⎩
3x1 − 2x2 + 5x3 = 7
x1 + 4x2 − 3x3 = 7

6x1 − 4x2 + 2x3 = −2
x1 + 2x2 + x3 = 9

Is the point (1; 3; 2) a solution of this system?
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6 CHAPTER 1 Systems of Linear Equations

SOLUTION It is simply a matter of putting the numerical values x1 = 1,
x2 = 3, and x3 = 2 into each of the four equations and seeing that the
equations are indeed satisfied by the given numbers. We have not revealed
how (1; 3; 2) was obtained. Indeed, some effort would have to be invested
to discover this solution. However, verifying a purported solution is trivial
in contrast. It requires only a substitution and a bit of arithmetic.

In Example 3, the system of equations is a textbook problem. It is not
typical of one that would arise in an application, where the data given (i.e.,
the numbers aij and bi) are rarely integers (whole numbers). In this text
most of the examples and problems employ integers, for simplicity.

General Systems of Linear Equations

Let us return to the general system of m linear equations in n unknowns.
The data for this system of equations are all the numbers aij and bi. The
number aij is the coefficient of xj in the ith equation. In a typical problem,
all these coefficients would be given to us numerically. The numbers bi on
the righthand side would also be given.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

am1x1 + am2x2 + · · · + amnxn = bm

Then the challenge is to find the values of the unknowns x1; x2; : : : ; xn that
make the equations true. The coefficient data and the list of unknowns can
be exhibited in a number of ways. Consider these four arrays:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ x =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

b1

b2

...
bm

⎤
⎥⎥⎥⎦

[A | b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

. . .
...

...
...

am1 am2 · · · amn | bm

⎤
⎥⎥⎥⎦

All of these arrays are examples of matrices. (The plural form of the word
matrix is matrices.) The middle two are also examples of column vectors.
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SECTION 1.1 Solving Systems of Linear Equations 7

In this context of a system of equations, the four matrices are called,
respectively,thecoefficient matrix,thevector of unknowns,therighthand-
side vector, and the augmented matrix. If we call the coefficient matrix
A, the righthand-side vector b, and the unknown vector x, the system of
equations can be expressed as

Ax = b

This formalism will be correct if we define the product Ax appropriately.
This comes later.

The matrix A displayed in detail earlier is called an m × n matrix
because it has m rows and n columns. The rows are the horizontal arrays
inside A and the columns are the vertical arrays inside A. We always give the
number of rows first and the number of columns second in describing the
dimensions of a matrix. Hence, we do not call A an n×m matrix because
that would be a matrix of a different shape, if n == m. The indices on the
letter a, such as aij, tell us that the number being referenced is in row i and
column j. One can call the first index i the row index, and the second j the
column index. Thus, for example, apq is the element in row p and column
q. These traditions must be followed so that we can understand each other
when speaking of matrices!

Gaussian Elimination

It is possible to use a process called Gaussian elimination to solve any
system of linear equations that has a solution.1

EXAMPLE 4 Solve this system of linear equations:⎧⎨
⎩

3x1 + 2x2 − 5x3 = −1
4x2 + x3 = 14
−2x3 = −4

1 This name honors Johann Karl Friedrich Gauss (1777–1855), one of the greatest
mathematicians. In elementary school he demonstrated his mathematical potential
and amazed his teachers by inventing a simple method for summing an arithmetic
series. Namely, one multiplies the number of terms by the average of the smallest
and largest terms. In the subject of linear algebra, when he was 18, Gauss invented
the method of least squares—a topic taken up in Sections 2.2 and 7.2 of this
book. Also, he was the first to prove the Fundamental Theorem of Algebra: Every
nonconstant polynomial assumes the value 0 at some point in the complex plane.
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8 CHAPTER 1 Systems of Linear Equations

SOLUTION We observe that this problem has a certain structure that can
be exploited in arriving at the solution: namely, the last equation can be
solved at once to obtain x3 = 2. Then, with x3 known, we can solve the
second equation for x2. To do so, write it as 4x2 + 2 = 14, and solve for
x2 = 3. Finally, with x2 and x3 known, we can compute x1 from the first
equation: 3x1 + (2)(3) + (−5)(2) = −1, and x1 = 1. We write the solution

as x =

⎡
⎣1

3
2

⎤
⎦ or x = (1; 3; 2); it is a point in three-space (denoted by R

3).

It may appear that the problem in Example 4 is artificial, since in
practice we do not expect systems of linear equations to have the structure
of which we took advantage. However, as we shall see, there is an algorithm
for turning a system of equations into the so-called triangular form present
in Example 4.

EXAMPLE 5 For a concrete example of modest size to illustrate the
techniques for solving systems of linear equations, we use this special
case:

{
3x1 + 2x2 = 4
9x1 + 7x2 = 17

SOLUTION The basic operation that can be used over and over again
in solving linear systems is the addition of a multiple of one equation to
another equation. For reasons that will become clear later, we call this
a replacement operation. In the example, let us add −3 times the first
equation to the second. The result is{

3x1 + 2x2 = 4
0x1 + 1x2 = 5

In this process, the first equation itself was not changed, although it played
a role in this first step. At this stage in the solution process, we have a choice.
First, we can see that the new second equation can be solved immediately
to get x2 = 5. Then, as in Example 4, we can solve the first equation for
x1, since x2 is 5. This yields x1 = −2. The alternative way of proceeding is
to carry out another replacement operation to produce a zero coefficient
of x2 in the first equation. In fact, we should add to the first equation −2
times the second equation, getting
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SECTION 1.1 Solving Systems of Linear Equations 9

{
3x1 + 0x2 = −6
0x1 + 1x2 = 5

The solution is now clear: x1 = −2 and x2 = 5. (Of course, we could
divide the first equation by 3 so that the solution values appear on the
righthand side. This is a scale operation.) There is an independent manner
of verifying the work: Simply substitute the purported solution into the
original system of equations to see whether it is actually a solution. The
work of doing so yields (3)(−2) + (2)(5) = 4 and (9)(−2) + (7)(5) = 17.
It is a good habit to find independent ways of verifying a solution—that is,
methods different from simply checking the steps that led to a solution in
the first place.

The process we have just illustrated is often called Gaussian elimina-
tion. The process is also called the row-reduction algorithm. The process
whereby the system of equations produces explicit values of each variable is
called Gauss–Jordan elimination in honor of Gauss and Wilhelm Jordan.2

Elementary Replacement and Scale Operations

In the examples, we have been using two elementary row operations: a
replacement operation of adding a multiple of one equation to another
equation, and a scale operation of multiplying an equation by a nonzero
scalar. How can we be sure that, when we transform a system in the way that
we did, we do not introduce spurious solutions or lose genuine solutions?
It is simply that one can add equal quantities to equal quantities to obtain
further equalities, and the process can be reversed. For example, if we write
the original pair of equations as

2 Wilhelm Jordan (1842–1899) is remembered for making improvements in the
stability of the Gaussian elimination algorithm when it is applied to least squares
problems. In the Gauss-Jordan elimination procedure for solving systems of linear
equations, Jordan is the geodesist Wilhelm Jordan. [Some people have made the
mistake of crediting Camille Jordan (1838–1922) in this context. In the Jordan
normal form of a matrix, it is indeed Camille Jordan who is to be credited.] In
the simple Gauss procedure (Gaussian elimination), row operations are used to
produce an upper triangular coefficient matrix, whereas in the Gauss–Jordan com-
putation, the row operations are designed to lead to the identity matrix on the left,
and the solution vector on the right. Wilhelm Jordan had a brilliant career as a mas-
ter surveyor and was involved in surveying large areas of Germany. His textbook
Handbook of Geodesy, in German, went through five editions and was translated
into French, Italian, and Russian. See Althoen and McLaughlin [1987].
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10 CHAPTER 1 Systems of Linear Equations

{
E1(x) = 0
E2(x) = 0

then we can proceed to {
E1(x) = 0

˛E1(x) + E2(x) = 0

where ˛ is any real number—that is, a scalar. Thus, when the first pair of
equations is true, the second pair must also be true. In other words, an x
that satisfies the first pair will also satisfy the second pair. Furthermore, we
can get back to the first pair by applying a similar process to the second pair:
to the second equation in the second pair, we add −˛E1(x). One can say
that the row operation we are talking about here is reversible by another
row operation of the same type. This shows that any solution of the second
pair of equations must satisfy the first pair. These two parallel assertions
establish that solutions are neither created nor destroyed in the process we
are using. To emphasize:

1. Every solution of the first pair of equations satisfies the second pair.
2. Every solution of the second pair of equations satisfies the first pair.

If two systems of m linear equations in n unknowns have precisely the
same set of solutions, we can get the solutions to the first system by solving
the second, or vice versa. This simple idea is at the heart of our procedure
for solving systems of linear equations. The remarks in the preceding para-
graph establish that if one system of equations is obtained from another by
a sequence of the permitted row operations, then the resulting two systems
of equations have precisely the same set of solutions. In other words, the
steps that we use do not change the set of solutions. With this in mind,
we aim for a simple set of equations derived from the one with which
we started. The solutions of the simple system are exactly the solutions of
the original. This is the grand strategy, which has a number of variations.
As matters stand, two people could work on a system of equations and
produce two different sequences of simplified systems. The solutions of
the simplified systems, in each of the two sequences, should be the same,
however!

Row-Equivalent Pairs of Matrices

It should be pointed out that the work needed to solve the previous system
of equations requires only that we keep track of the numerical data. There
is no need to write the names of the variables in each step, or the equals
sign. Thus, we can set up the data in successive arrays like this:
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SECTION 1.1 Solving Systems of Linear Equations 11

[
3 2 4
9 7 17

]
∼

[
3 2 4
0 1 5

]
∼

[
3 0 −6
0 1 5

]
∼

[
1 0 −2
0 1 5

]

In this display, the symbol ∼means that the matrices on either side of the
symbol are connected by allowable row operations. In English, we say that
the two matrices are row equivalent to each other.

Some readers may wish to describe each of the steps with the following
notation:

→
−3

[
3 2 4
9 7 17

]
∼ −2
→

[
3 2 4
0 1 5

]
∼

1
2

[
3 0 −6
0 1 5

]

∼
[

1 0 −2
0 1 5

]

Here we have written to the left of these matrices an arrow→ indicating
the so-called pivot row and a number indicating the multiplier next to the
target row. A multiple of the pivot row is added to the target row. This is
helpful in recalling what was done. We rarely include these symbols in the
text, but the reader may wish to add them.

The rectangular arrays of data are again matrices. A matrix can be
any rectangular array of real numbers. In the preceding example, we are
using 2×3 matrices, meaning that there are two horizontal rows and three
vertical columns. The symbol∼ indicates that we have proceeded from one
matrix to another by one or more row operations of the permitted type:
addition of a multiple of one row to another row. Later we shall add further
row operations to our arsenal, and the notation A ∼ B will mean that each
of the matrices A and B can be obtained from the other by applying one or
more allowable row operations. We say in this case that the two matrices
are row equivalent to each other.

This type of relation occurs often in mathematics, especially in linear
algebra. A formal definition follows. In this definition we have deliberately
chosen a symbol, �, that is not likely to conflict with other notation.

DEFINITION

An equivalence relation on a set of entities is a relation that we denote here
by the symbol �. It must satisfy these three conditions:

• p � p. (reflexive)
• If p � q, then q � p. (symmetric)
• If p � q and q � r, then p � r. (transitive)

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 12 --- #12
�

�

�

�

�

�

12 CHAPTER 1 Systems of Linear Equations

An example of an equivalence relation is A ∼ B. To see why, think of
the row operations used. Clearly, A ∼ A and the reflexive property holds.
Why is the symmetric property true for a row-equivalence relation? The
row operations that take us from A to B are reversible, and the reverse
operations lead from B back to A. For the transitive property, if A ∼ B and
B ∼ C, then A ∼ C because the respective row operations from A and B
can be done one after another on A.

When solving textbook problems (which often have integer data), one
can avoid divisions and fractions in some row reductions. For example, con-
sider this row reduction where we begin with row two as the first pivot row:

−1
→

⎡
⎣3 −1 2

2 5 −4
7 −25 1

⎤
⎦ ∼ →−2

−7

⎡
⎣1 −6 6

2 5 −4
7 25 1

⎤
⎦∼ →
−1

⎡
⎣1 −6 6

0 17 −16
0 17 −41

⎤
⎦

∼
⎡
⎣ 1 −6 6

0 17 −16
0 0 15

⎤
⎦

Here there is no solution. Indeed, the third equation states that 0x+0y = 15.
Recall that a system of linear equations is inconsistent when it has no so-
lution, and consistent when it has one or more solutions. These concepts
are studied further in Section 1.2. In the preceding example, each pair of
equations has a unique solution, but there exists no point satisfying all
three equations simultaneously.

We have inserted a vertical line in a matrix to separate the coefficient
matrix from the righthand side, if the matrix is the augmented matrix of a
system of equations. On the right side of this line, we have the righthand
side of the original system of equations. We will encounter situations where
there are multiple columns to the right of this line, and therefore it is a good
practice to place this vertical line in any augmented matrix.

If we have several systems with the same lefthand side but different
righthand sides, we can use an augmented matrix to solve them simulta-
neously. For example, we can solve these two systems{

3x1 + 2x2 = 1
9x1 + 7x2 = 0

and

{
3x1 + 2x2 = 0
9x1 + 7x2 = 1

by row-reducing the following augmented matrix, in which there are two
righthand sides:

→
−3

[
3 2 1 0
9 7 0 1

]
∼ −2
→

[
3 2 1 0
0 1 −3 1

]
∼

[
3 0 7 −2
0 1 −3 1

]

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 13 --- #13
�

�

�

�

�

�

SECTION 1.1 Solving Systems of Linear Equations 13

The solutions are x1 = 7
3
; x2 = −3 for the first system and x1 = − 2

3
; x2 = 1

for the second system. This procedure can be useful later in computing
inverses of matrices. (See Section 3.2.)

EXAMPLE 6 Another example, requiring a little more thought, calls for
solving the following system:{

7x1 + 5x2 = 83=6
37x1 + 7x2 = 361=6

SOLUTION Our method is the same, and we add a multiple of the first
equation to the second equation to create a 0 where the number 37 stands.
Denote the unknown multiplier by ˛. Then we want 37 + ˛7 = 0, and the
multiplier should be ˛ = −37=7. The resulting system is{

7x1 + 5x2 = 83=6
0x1 − (136=7) x2 = −272=21

In the same way as before, we now decide that 35=136 times the second
equation should be added to the first. The result of doing so is{

7x1 + 0x2 = 21=2
0x1 − (136=7) x2 = −305=42

The solution is therefore x1 = 3
2

and x2 = 2
3
. We summarize the work in

matrices like this:[
7 5 83=6

37 7 361=6

]
∼

[
7 5 83=6
0 −136=7 −272=21

]

∼
[

7 0 21=2
0 −136=7 −272=21

]

EXAMPLE 7 Given the following equivalent matrices:⎡
⎣ 5 3 0 21

1 3 −1 15
−2 0 −1 1

⎤
⎦∼

⎡
⎣ 0 −12 5 −54

1 3 −1 15
0 6 −3 31

⎤
⎦∼

⎡
⎣ 0 0 −1 8

1 3 −1 15
0 6 −3 31

⎤
⎦

What is the solution?
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14 CHAPTER 1 Systems of Linear Equations

SOLUTION In this example, further reduction can be carried out, but
observe that the system of equations can be easily solved by using the work
already done. To determine x3, use the first equation (in the final array),
which asserts that x3 = −8. With x3 in hand, we now use the third equation,
which indicates that 6x2−3x3 = 31. This becomes 6x2 +24 = 31; therefore,
x2 = 7

6
. Lastly, use equation two, which asserts that x1 + 3x2 − x3 = 15.

From this, we have x1 + 3( 7
6
) − (−8) = 15 and x1 = 7

2
. The procedure we

have just illustrated is the one usually used in mathematical software. In
brief, we reduce the matrix so that there is one equation containing only
one unknown and another equation containing that unknown and one
other, and so on. The system is readily solved by starting with the equation
having only one unknown, and proceeding through the whole system one
equation at a time.

In the preceding example, further row reduction leads to

⎡
⎣ 0 0 −1 8

2 6 −2 30
0 6 −3 31

⎤
⎦ ∼

⎡
⎣ 0 0 −1 8

2 0 1 −1
0 6 −3 31

⎤
⎦

∼
⎡
⎣ 0 0 −1 8

2 0 0 7
0 6 0 7

⎤
⎦ ∼

⎡
⎣ 0 0 1 −8

1 0 0 7=2
0 1 0 7=6

⎤
⎦

Again, we obtain x1 = 7
2
, x2 = 7

6
, and x3 = −8.

The row operations that we have been exploiting are (1) addition to one
row of a multiple of another row and (2) multiplying a row by a nonzero
constant. These two operations are sufficiently powerful to solve any system
of linear equations by repeated application. (We are not stopping to prove
this fact.) Example 7 illustrates how this is done. Here is another example
on which to test yourself.

EXAMPLE 8 Solve this system of linear equations by repeated use of
the row operation illustrated in the two preceding examples:⎧⎨

⎩
35x1 + 6x2 − 7x3 = 15

−90x1 − 15x2 + 21x3 = −40
25x1 + 3x2 − 7x3 = 11

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 15 --- #15
�

�

�

�

�

�

SECTION 1.1 Solving Systems of Linear Equations 15

SOLUTION We systematically create zeros in strategic positions. Here is
one sequence of reductive steps. Start by subtracting row three from row
one. Then add 3 times row three to row two. Next add 2 times row one onto
row two. Then add −3 times row two to row three. Finally, add −2 times
row two to row one and−3 times row two to row three.⎡

⎣ 35 6 −7 15
−90 −15 21 −40

25 3 −7 11

⎤
⎦ ∼

⎡
⎣ 10 3 0 4
−90 −15 21 −40

25 3 −7 11

⎤
⎦

∼
⎡
⎣ 10 3 0 4
−15 −6 0 −7

25 3 −7 11

⎤
⎦ ∼

⎡
⎣ 10 3 0 4

5 0 0 1
15 0 −7 7

⎤
⎦

∼
⎡
⎣ 0 3 0 2

5 0 0 1
0 0 −7 4

⎤
⎦

Therefore, the solution is x1 = 1
5
, x2 = 2

3
, and x3 = − 4

7
.

In the preceding example, we have illustrated the judicious use of row
operations to avoid dealing with fractions. Conversely, some may prefer to
follow the systematic approach of using the first row as the pivot row and
creating zeros in the first column below the first row. Next, using the second
row as the pivot row, one can create zeros in the second column below the
second row, and so on.

Elementary Row Operations

Next on our agenda is the introduction of another of the elementary
row operations, (3) the multiplication of a row by a nonzero scalar. This
operation is a scaling of an equation. With this operation, we can further
reduce some of the preceding matrices as follows:[

7 0 21=2
0 −136=7 −272=21

]
∼

[
1 0 3=2
0 1 2=3

]
⎡
⎣ 0 0 −1 8

1 0 0 7=2
0 6 0 7

⎤
⎦∼

⎡
⎣ 0 0 1 −8

1 0 0 7=2
0 1 0 7=6

⎤
⎦

⎡
⎣ 0 3 0 2

5 0 0 1
0 0 −7 4

⎤
⎦∼

⎡
⎣ 0 1 0 2=3

1 0 0 1=5
0 0 1 −4=7

⎤
⎦
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16 CHAPTER 1 Systems of Linear Equations

As with the first type of row operation (adding a multiple of one row onto
another row), we should be sure that we do not alter the solutions when
we use this new row operation. But this fact is obvious: If we look at only
one equation, E(x) = 0, then this is equivalent to ˛E(x) = 0, provided
that ˛ == 0: This last condition is necessary to get back to E(x) = 0 from
˛E(x) = 0; of course, we must multiply by 1=˛.

Without introducing any really new row operations, we can now per-
form interchanges or swaps among the rows in a system of equations.
Let r1 and r2 be two rows. With a succession of row operations of the two
types already described, we can execute a swap, that is an interchange of two
rows:

[
r1

r2

]
∼

[
r1

r1 + r2

]
∼

[ −r2

r1 + r2

]
∼

[
r2

r1 + r2

]
∼

[
r2

r1

]

Despite the fact that only two types of row operations are needed, it is
conventional to define three types of elementary row operations:

1. (replacement) Add a multiple of one row to another.
2. ( scale) Multiply a row by a nonzero factor.
3. (swap) Interchange a pair of rows.

The rows change positions only in a swap operation. Remember that in any
proof involving row operations, the swapping process can be performed
with four replacement and scaling operations. Thus, only replacement and
scaling operations are essential in proofs.

If it is desired to describe the row operations being used on a matrix,
the following notation is suggested:

replacement ri ← ri + a rj (i == j; a is a scalar)

scale ri ← c ri (scalar c == 0)

swap ri ↔ rj

In this description, the rows are r1, r2, and so forth. The replacement oper-
ation is the adding of a multiple of one row onto another row. The scaling
operation is simply multiplying a row by a nonzero constant. The swap
operation is the interchanging of two rows. (A similar notation is com-
mon in computer science and computer programming.) To illustrate, we
use Example 5 (p. 8). The operations needed to reduce the given matrix
are (r2 ← r2 − 3r1), (r1 ← r1 − 2r2), and (r1 ← 1

3
r1). Note that the order

of performing these steps must be observed.
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SECTION 1.1 Solving Systems of Linear Equations 17

In computer programs for solving large systems, swapping of rows can
be avoided to reduce so-called data motion. An index array may be used to
keep track of the order of pivot rows. In addition, it is usually not necessary
to make the pivot elements equal to unity. High-quality software usually
proceeds as we did in Example 7 (p. 13), resulting in one equation having
only the term x3, another equation involving x2 and x3, and a third equation
involving all three variables.

Reduced Row Echelon Form

For a deeper understanding of linear equations, we often want the sim-
plest form of a system of equations arrived at by use of all three types
of row operations. At this stage, we can summarize our work: With suit-
able row operations, any matrix can be transformed into a special stan-
dard form called reduced row echelon form. This form is characterized as
follows.

DEFINITION

A matrix is in reduced row echelon form if

• All zero rows have been moved to the bottom of the matrix.
• Each nonzero row has 1 as its leading nonzero entry, using left-to-right

ordering. Each such leading 1 is called a pivot.
• In each column containing a pivot, there are no other nonzero elements.
• The pivot in any row is farther to the right than the pivots in rows above.

An important theorem, which we prove in Section 1.3 (Theorem 6,
p. 79), asserts the following:

THEOREM 1

Every matrix has one and only one reduced row echelon form.

With the help of this theorem, we see that the pivots are uniquely deter-
mined by the given matrix.

DEFINITION

A pivot position in a matrix is a location where a leading 1 (a pivot)
appears in the reduced row echelon form of that matrix.
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18 CHAPTER 1 Systems of Linear Equations

In general, we do not know the pivot positions until we have found the
reduced row echelon form of the matrix, or any row echelon form (to be
defined on p. 20).

Here are four examples of matrices in reduced row echelon form:

[
0 1
0 0

] [
1 0
0 1

] ⎡
⎣ 0 1 3 0

0 0 0 1
0 0 0 0

⎤
⎦

⎡
⎣ 1 5 0 −7 0

0 0 1 3 0
0 0 0 0 1

⎤
⎦

All the 1’s in these four matrices happen to be pivots. (See the previous
definition to verify this assertion.) Here are four examples of matrices not
in reduced row echelon form:

[
0 0
1 0

] [
0 1
1 0

] ⎡
⎣ 0 1 3 2

0 0 0 1
0 0 0 0

⎤
⎦

⎡
⎣ 0 1 3 0

0 0 0 4
0 0 0 0

⎤
⎦

An example of the general structure of a matrix in reduced row echelon
form is as follows: ⎡

⎢⎢⎢⎢⎣
0 � × 0 0 ×
0 0 0 � 0 ×
0 0 0 0 � ×
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Here the boxed entries are the pivot positions. The symbol × designates
either a zero or nonzero entry. Notice the staircase pattern of the pivots and
zeros, and the fact that above and below each pivot the entries are 0. For an
n × n matrix, the reduced row echelon form may be an identity matrix.
This matrix is square and is denoted by I or In. Its entries are ıij, where
ıii = 1 and ıij = 0 when i == j. This notation, ıij, is called the Kronecker
delta.3 For example, the 5× 5 identity matrix I5 is shown here:⎡

⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

3 Leopold Kronecker (1823–1891) concentrated his research on the theory of al-
gebraic numbers, and contributed to several new branches of mathematics, viz.
group theory and field theory.
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SECTION 1.1 Solving Systems of Linear Equations 19

EXAMPLE 9 Show how to avoid fractions until the last step in finding

the reduced row echelon form for this matrix

⎡
⎣ 3 2 −3 −3

5 1 0 7
7 −4 32 6

⎤
⎦.

SOLUTION The tactic is to scale two rows so that their leading nonzero
entries are the same and then simply subtract one of these rows from the
other, creating a zero leading entry in one row.

⎡
⎣ 3 2 −3 −3

5 1 0 7
7 −4 32 6

⎤
⎦ ∼

⎡
⎣ 15 10 −15 −15

15 3 0 21
7 −4 32 6

⎤
⎦

∼
⎡
⎣ 15 10 −15 −15

0 −7 15 36
7 −4 32 6

⎤
⎦ ∼

⎡
⎣ 3 2 −3 −3

0 −7 15 36
7 −4 32 6

⎤
⎦

∼
⎡
⎣ 21 14 −21 −21

0 −7 15 36
21 −12 96 18

⎤
⎦ ∼

⎡
⎣ 21 14 −21 −21

0 −7 15 36
0 −26 117 39

⎤
⎦

∼
⎡
⎣ 3 2 −3 −3

0 −7 15 36
0 −2 9 3

⎤
⎦ ∼ · · · ∼

⎡
⎣ 11 0 0 34

0 −11 0 93
0 0 11 −17

⎤
⎦

∼
⎡
⎣ 1 0 0 34=11

0 1 0 −93=11
0 0 1 −17=11

⎤
⎦

We leave the intermediate steps as an exercise.

These results can be confirmed by using the Matlab command
format rat and rref(A). One can also use rrefmovie(A) to see
the algorithm working step-by-step. (See the examples on p. 61.)

Fortunately for us, advanced mathematical software systems have built-
in commands for computing the reduced row echelon form of matrices.
For example, Matlab uses rref(A), Maple has ReducedRowEchelon
Form(A), and Mathematica has RowReduce[A]. Further examples us-
ing these commands are found in the subsections on Mathematical Soft-
ware at the ends of sections.
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20 CHAPTER 1 Systems of Linear Equations

Row Echelon Form

A partially reduced form of a matrix is often used; it has three weaker
properties.

DEFINITION

A matrix is in row echelon form if

• All zero rows have been moved to the bottom.
• The leading nonzero element in any row is farther to the right than the

leading nonzero element in the row just above it.
• In each column containing a leading nonzero element, the entries below

that leading nonzero element are 0.

For example, the matrix below is in row echelon form:⎡
⎢⎢⎣

0 3 5 9 6 4 1
0 0 0 7 6 3 2
0 0 0 0 0 4 3
0 0 0 0 0 0 0

⎤
⎥⎥⎦

An example of the general structure of a matrix in row echelon form is as
follows: ⎡

⎢⎢⎢⎢⎣
0 � × × × ×
0 0 0 � × ×
0 0 0 0 � ×
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

Here the boxed entries � are the leading nonzero entries in the rows. It is
obvious that a row echelon form is obtained with less work than is required
for the reduced row echelon form. Notice the staircase pattern of the pivot
positions. For some questions about a matrix (such as its rank), the row
echelon form gives the answers more quickly. The reduced row echelon
form of a matrix is unique, whereas a matrix may have many row echelon
forms. Thus, one may ask for the reduced row echelon form of a matrix
or a row echelon form. A proof of the uniqueness of the reduced row
echelon form is presented in Section 1.3 (Theorem 6, p. 79). The concepts
of reduced row echelon form and row echelon form are independent of
whether the matrix is an augmented matrix. We may ignore the vertical
line in an augmented matrix when deciding whether it is in row echelon or
reduced row echelon form.
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SECTION 1.1 Solving Systems of Linear Equations 21

Intuitive Interpretation

There is an intuitive interpretation of a system of linear equations that
helps one cope with some of the mysteries in linear algebra.

Let us start with a vector x = (x1; x2) that is free to roam all over R
2.

The two variables x1 and x2 are not connected. It is often said in such a
situation that the point has two degrees of freedom.

What happens when we impose a single linear condition on this point?
Suppose, for example, that we require x1 + 3x2 = 7. The point now has only
one degree of freedom. If we start with a point that satisfies this equation and
then decide to allow the point to move, while still obeying that equation, it
can move only in such a way that the equation x1 + 3x2 = 7 remains true.
As we know, this means that the points must lie on a line. We can start with
(4; 1), a point that already satisfies the equation. If we change the point
while maintaining the condition x1 + 3x2 = 7, we can go to (1; 2) but not
to (2; 2), for example.

Suppose now that another condition is imposed, in addition to the
first one. Say that we require 2x1 − 5x2 = −8. This in effect restricts our
point to a single location, namely (1; 2). The point has lost its degrees of
freedom. Each added condition further restricts the point, and we can even
make the point disappear—meaning that it cannot satisfy all the conditions
laid down. In the present example, this occurs if we require further that
x1 − x2 = 0.

Unfortunately, our intuition can be faulty, and that is where the science
of linear algebra enters the picture. For example, suppose that we require
x1 + 3x2 = 7, as before, and add the condition 2x1 + 6x2 = 14. This does not
further restrict the point, because this new condition is the same as the first
(since it is a simple multiple of the first equation). That is the first unusual
case. Another unusual case is illustrated by making our second condition
2x1 + 6x2 = 8. Now no point satisfies the two conditions. Each equation by
itself represents a line, but these two lines are parallel and non-intersecting.
Hence, there is no point that satisfies both equations simultaneously.

Next, one can contemplate more complicated situations, such as linear
equations with three variables. Again, we can start with an unrestricted
point x = (x1; x2; x3); it has three degrees of freedom. If we impose a single
equation, such as 3x1 − 4x2 + 5x3 = 9, we find that our variable point is
now confined to a plane and has only two degrees of freedom. If we add
another linear condition, such as x1− 5x2− x3 = 7, we find that the points
satisfying both equations lie on a line. But there are other cases besides this
normal or expected case. Two equations might describe an impossible case
(a pair of parallel planes), or they might not actually represent two different
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22 CHAPTER 1 Systems of Linear Equations

conditions. Going on to three equations, one might expect that these three
equations ⎧⎨

⎩
3x1 − 4x2 + 5x3 = 9

x1 − 5x2 − x3 = 7
5x1 − 14x2 + 3x3 = 23

would define a single point in R
3, but in fact they describe a plane. Can you

see why?
With more variables and more equations the situation becomes more

complicated, but we shall develop methods for understanding these prob-
lems, no matter how many equations and variables are present. In fact, that
is our first major goal: to understand the set of all solutions to any given
system of linear equations.

Application: Feeding Bacteria

From time to time in this book, we interrupt the mathematical proceedings
to give applications of the theory. Here is such an example.

EXAMPLE 10 A bacteriologist has placed three types of bacteria, la-
beled B1, B2, and B3, in a culture dish, along with certain quantities of
three nutrients, labeled N1, N2, and N3. She knows the amounts of each
nutrient that can be consumed by each bacterium in a 24-hour period.
These data are collected in a table:

B1 B2 B3

N1 4 2 6
N2 3 1 2
N3 7 5 2

This table tells us, for example, that each bacterium B1 in one day can
consume 4 units of N1, 3 units of N2, and 7 units of N3. How many
bacteria of each type can be supported daily by 4200 units of N1, 1900
units of N2, and 4700 units of N3?

SOLUTION Denote by x1, x2, and x3 the number of bacteria of each type
represented in the culture. Considering just the first nutrient and noting
how it can be consumed by the three types of bacteria, we have the equation
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SECTION 1.1 Solving Systems of Linear Equations 23

4x1 + 2x2 + 6x3 = 4200. The other two equations governing the nutrients
N2 and N3 are 3x1 + x2 + 2x3 = 1900 and 7x1 + 5x2 + 2x3 = 4700. The
augmented matrix for this system is⎡

⎣ 4 2 6 4200
3 1 2 1900
7 5 2 4700

⎤
⎦

The steps in the row reductions are these:⎡
⎣ 1 1 4 2300

3 1 2 1900
7 5 2 4700

⎤
⎦ ∼

⎡
⎣ 1 1 4 2300

0 −2 −10 −5000
0 −2 −26 −11400

⎤
⎦

∼
⎡
⎣ 1 1 4 2300

0 1 5 2500
0 1 13 5700

⎤
⎦

∼
⎡
⎣ 1 1 4 2300

0 1 5 2500
0 0 8 3200

⎤
⎦

The calculation of the solution goes like this:

x3 = 3200=8 = 400
x2 = 2500− 5x3 = 2500− 2000 = 500
x1 = 2300− 4x3 − x2 = 2300− 1600− 500 = 200

Hence, the solution is x1 = 200, x2 = 500, and x3 = 400 and we obtain
x = (200; 500; 400).

Mathematical Software

Throughout the book, we give examples using Matlab, Maple, and
Mathematica, which are currently the most popular mathematical software
packages. The websites for these software systems are Matlab
(www.mathworks.com), Maple (www.maplesoft.com), and Math-
ematica (www.wolfram.com). There are many other mathematical soft-
ware systems available. For example, there is a noncommercial system called
Octave that is freely redistributable under the terms of the GNU Gen-
eral Public License of the Free Software Foundation (www.gnu.org/
software/octave). Unfortunately, each of these systems has its own
syntax!
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24 CHAPTER 1 Systems of Linear Equations

A matrix may undergo Gaussian elimination or a variant of it when put
into reduced row echelon form. For example, Matlab produces the reduced
row echelon form using Gauss–Jordan elimination with partial pivoting in
which a tolerance parameter is used to test for negligible column elements.
Partial pivoting is a process by which pivot elements are selected to reduce
roundoff error, and may involve interchanging rows.

EXAMPLE 11 Here is a seven decimal-place example of two linear
equations with two variables:{

3:215793x1 + 82:13459x2 = 5:332873
9:300567x1 − 1:776321x2 = −12:99334

How can we use the computer to find the solution of this system?

SOLUTION In a computer on which Matlab has been installed, we
input the data for our problem by typing this information followed by
the commands to solve the system.

Matlab

format long
A = [3.215793,82.13459;9.300567,-1.776321]
b = [5.332873;-12.99334]
x = A\b
r = A*x - b

In Matlab, spaces can be used in place of the commas between array en-
tries. Matlab does all its computations in full precision but offers various
formats for displaying the results. The command format long requests
answers in full floating point form, with 15 decimal places. The com-
mand format rat requests answers as ratios of small integers. The com-
mand format short produces answers with five-digit floating point
values; this format is the default. In this example, Matlab responds by
printing all the input data (echoing) and the solution of the problem
x ≈ (−1:37437016149456; 0:11873880352654). We then ask for an in-
dependent verification of the answer by substituting the numerical values
of x1 and x2 into the two equations and comparing to the prescribed val-
ues of b1 and b2. In fact, there is a very small discrepancy, which is due to
roundoff errors. The difference is (−0:089;−0:18)× 10−14. (In many types
of problems, one can verify the proffered solution by substitution or some
other independent check.)
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SECTION 1.1 Solving Systems of Linear Equations 25

The Maple system handles the same problem as follows:

Maple

with(LinearAlgebra):
A := Matrix([[3.215793,82.13459],[9.300567,-1.776321]]);
b := Vector([5.332873,-12.99334]);
x := LinearSolve(A,b);
r := A.x - b;

Here, we illustrate with a user-friendly package called LinearAlgebra,
designed explicitly for carrying out linear algebraic computations.

In the Mathematica software package, there are similar commands, as
follows:

Mathematica

A = {{3.215793,82.13459}; {9.300567,-1.776321}}
b = {5.332873,-12.99334}
x = LinearSolve(A,b)
r = A.x - b

We have not explained all the notational devices (vectors and matrices)
that are being used in this example because at this stage we only want to
emphasize that high-quality software is available to solve problems such as
this. The user has only to type input values for such programs, and then
request the solution.

Maple has commands that perform elementary row operations
symbolically:

Replacement ri ← ri + a rj RowOperation(A,[i,j],a);
Scale ri ← c ri RowOperation(A,i,c);
Swap ri ↔ rj RowOperation(A,[i,j]);

As an illustration, we solve the linear system 3x1+2x2 = 4 and 9x1+7x2 = 17
from Example 5.

Maple

with(LinearAlgebra):
A := Matrix([[3,2,4],[9,7,17]]);
A1 := RowOperation(A,[2,1],-3);
A2 := RowOperation(A1,[1,2],-2);
A3 := RowOperation(A2,1,1/3);
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26 CHAPTER 1 Systems of Linear Equations

The Basic Linear Algebra Subprograms (BLAS) is a collection or ‘‘li-
brary’’ of computer routines. It provides standard building blocks for per-
forming basic vector and matrix operations. For the elementary vector
operations, the replacement is axpy to suggest the operation y← a x + y
in which a vector y is replaced by a scalar a times a vector x plus the orig-
inal vector y. Also, there are routines called swap for interchanging two
vectors (x ↔ y) and scale for scaling a vector x (x ← c x). The BLAS
routines are particularly useful on high-performance computers and have
been extended and improved for each new generation of supercomputer
and for handling either dense or sparse data.

Algorithm for the Reduced Row Echelon Form

One algorithm for finding the reduced row echelon form of a matrix is
presented here. (The steps described are easily translated into a computer
program.)

1. Interchange rows if necessary to place all zero rows on the
bottom.

2. Identify the leftmost nonzero column. Say it is pivot column j. Inter-
change rows to bring a nonzero element to the top row and jth col-
umn, which is the pivot position. (Computer programs often choose
the largest entry in absolute value in an attempt to minimize round-
off errors.) Use the row replacement operation to create zeros in all
positions in the pivot column below the pivot position.

3. Repeat Steps 1 and 2 on the remaining submatrix until there are no
nonzero rows left. (We have found a row echelon form, but it is not
unique.)

4. Beginning with the rightmost pivot, working upward and to the left,
use row replacement operations to create zeros in all positions in the
pivot column above the pivot position. Scale the entry in the pivot row
to create a leading 1.

5. Repeat Step 4, ending with the unique reduced row echelon form of
the given matrix.

Steps 1–3 are called the Gaussian or forward portion of this algorithm,
and Steps 4–5 are the backward portion. An alternative algorithm called
Gauss-Jordan elimination combines the forward and backward portions
of the algorithm by doing the elimination steps above and below the pivot
positions. Although students may find the Gauss-Jordan elimination useful
for pencil and paper calculations, it is more computationally intensive for
computer programs.
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SECTION 1.1 Solving Systems of Linear Equations 27

SUMMARY 1.1

• Point–slope form of a line: y = mx + b where
m is the slope and b is the intercept

• Two-point form of a line through points
(x0; y0) and (x1; y1):
y − y0 = m(x − x0) where m = (y1 − y0)=
(x1 − x0)

• Lines L1 and L2 in R
2: there can be a unique

solution (intersect once), no solution (paral-
lel), or infinitely many solutions (co-linear)

• Matrix form of a system of linear equations:
Ax = b

• Augmented matrix: [A b]

• Gaussian elimination: Ax = b becomes (after
row reduction) Ux = c, where U is an upper
triangular matrix

• Row-equivalent augmented matrices:
[A b] ∼ [U c]

• Elementary row operations:

• (replacement) Add to row i a multiple of
row j, where i == j (ri ← ri + a rj)

• (scale) Multiply row i by c, a nonzero
scalar (ri ← c ri)

• (swap) Interchange the two rows i and j

(ri ↔ rj)

• Consistent system has at least one solution;
inconsistent system has no solution

• Pivots: leading 1’s in reduced row echelon
form; pivot positions: locations where the
pivots will be at the end of the reduction pro-
cess

• The reduced row echelon form (unique):
zero rows at bottom; pivot rows form a stair-
case pattern (with possibly different widths
of steps); pivot columns contain only the
pivot entry 1

• One row echelon form (non-unique):
zero rows are moved to the bottom; the
rows containing leading nonzero elements
form a staircase pattern; columns contain-
ing leading nonzero elements contain only
0’s elsewhere

KEY CONCEPTS 1.1

Linear equations, systems of linear equations,
lines and planes, coefficient matrix, augmented
matrix, vector of unknowns, vector of right-
hand sides, Gaussian elimination, triangular
systems, elementary row operations (replace-
ment, scale, swap), row equivalence of matrices,

consistent and inconsistent systems, row-
reduction process, reduced row echelon form,
pivots and pivot positions, row echelon form,
bacteria-nutrition application, using mathe-
matical software, algorithm for reduced row
echelon form

GENERAL EXERCISES 1.1

1. Solve this system of equations and verify
your answer:⎧⎨
⎩

2x2 − 3x3 = −11
4x1 + x2 + 3x3 = 34

5x3 = 35

2. Solve this system of linear equations and
verify your answer:⎧⎨
⎩

3x1 = 9
2x1 − 5x2 + 6x3 = −28
−4x1 + 5x3 = −32
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28 CHAPTER 1 Systems of Linear Equations

3. Solve this system by Gaussian elimination
and verify your answer:{

2x1 + 3x2 = −3
6x1 + 4x2 = −5

4. Solve the system whose augmented matrix
is given here, and verify your answer:[ −3 4 37

2 −5 −41

]

5. (Continuation.) What are a21 and a12 in the
matrix displayed in the preceding problem?

6. Let

⎧⎨
⎩

3x2 + 7x3 + x1 = 42
x2 + 2x1 = 6

3x3 + 11x1 = 76

Solve this system of equations by carrying
out the row-reduction process to reduced
row echelon form.

7. Carry out Gaussian elimination on the sys-
tem of equations in Example 3 (p. 5). Does
that system have any solutions other than
(1; 3; 2)?

8. Show that⎡
⎣ 0 1 3 0 7 0

0 0 0 5 2 0
0 0 0 0 0 1

⎤
⎦

∼
⎡
⎣ 0 1 3 15 13 4

0 2 6 35 28 3
0 −2 −6 20 −6 −3

⎤
⎦

9. Solve this system in such a way that frac-
tions enter only in the last step:{

3x + y = −5
2x + 4y = 7

10. Solve the system of equations whose aug-

mented matrix is

⎡
⎣ 1 2 1 0

3 1 0 3
5 4 3 10

⎤
⎦

11. Solve the system of equations whose aug-

mented matrix is

⎡
⎣ 3 3 4 11

2 1 1 6
1 2 3 4

⎤
⎦

12. Solve this system:

⎧⎨
⎩

3x1 + 6x2 + 6x3 = 21
2x1 + 4x2 + 5x3 = 16
2x1 + 5x2 + 4x3 = 17

13. Use the theory of linear equations to deter-
mine whether the lines described by these
three equations have a point in common:
x + 2y = 1, 2x− 3y = 9, −3x− 2y = −7.

14. Solve the system of equations having this
augmented matrix, without performing
any further row operations:⎡
⎣ 0 0 3 12

1 2 1 12
0 2 2 6

⎤
⎦

15. Show how to solve these three systems all at
the same time:

a.

⎧⎨
⎩

x + 3y + 2z = 1
2x + y + z = 0

4x− y + 3z = 0

b.

⎧⎨
⎩

x + 3y + 2z = 0
2x + y + z = 1

4x− y + 3z = 0

c.

⎧⎨
⎩

x + 3y + 2z = 0
2x + y + z = 0

4x− y + 3z = 1

16. Draw graphs of the two lines having equa-
tions x + y = 13 and −2x + y = 4. From
the graphs, estimate where the lines inter-
sect. Confirm the estimate by solving the
system of two equations. Convert the sys-
tem of equations to reduced row echelon
form.

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 29 --- #29
�

�

�

�

�

�

SECTION 1.1 Solving Systems of Linear Equations 29

17. Two lines are given in R
2, namely,−x + y =

1 and 2x + y = 4. Find the point of inter-
section of these two lines. Then investigate
what happens if we change the second equa-
tion to 2x − 2y = 4. Finally, find out what
happens if we change the second equation
to 2x − 2y = −2. What do you learn from
making small changes to the system?

18. It is claimed that the reduced row echelon
form of the matrix⎡
⎣ 13 17 −31 1097

11 −19 7 −413
5 3 29 −359

⎤
⎦ is

⎡
⎣ 1 0 0 13

0 1 0 23
0 0 1 −17

⎤
⎦

How can we verify or disprove the claim
without going through the complete row-
reduction process? (Think about systems of
equations represented by the two matrices.)

19. Solve these two systems of linear equations
and check your work with an independent
verification. In each case the augmented
matrix is shown:[

2 −1 a

3 4 b

] [
2 −1 11
3 4 −11

]

20. Find the reduced row echelon forms of
these matrices:

a.

⎡
⎢⎢⎣

0 3 0 5
4 0 0 −3
0 0 1 7
8 3 1 6

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎣
−12 0 −1 2

16 3 1 0
20 3 2 4
12 3 1 3

⎤
⎥⎥⎦

c.

⎡
⎣ 3 1

4 2
−6 1

⎤
⎦ d.

[
3 4 −6
1 2 1

]

21. In an n × n matrix whose elements are
aij = (−1)i+j, how many positive terms are
there? (A formula is sought.)

22. Consider

⎡
⎣ 1 3 2 1

0 −4 5 −23
2 2 9 t

⎤
⎦

This is a system of equations in which one
element t can change. Find values of the pa-
rameter t for which we can obtain solutions
to this augmented matrix. Explain the im-
plications of this example in the theory of
linear equations.

23. Suppose that we have an equation of the
form f(x) = g(x), where f and g are real-
valued functions of the real variable x. We
want to determine x from this equation.
Certainly, we can proceed to the equation
[f(x)]2 = [g(x)]2. Give an example to show
that solutions of the second equation are
not necessarily solutions of the first. Why
is the situation here different from the one
discussed in this section?

24. By obtaining the reduced row echelon form,
find the solution to this pair of equations:
3x2 + x1 = 17 and 2x1 + 7x2 = 39

25. Use the row-reduction techniques to solve
this system, in which you may assume c == 0
and 3c + 5a == 0:{

ax + 3y = 7
cx− 5y = −4

26. Explain: If a system of linear equations
has exclusively rational numbers for the
data aij and bi, and if the system has
a solution, then it will have a rational
solution. (A real number is said to be
rational if it can be expressed as the quo-
tient of two integers.)
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30 CHAPTER 1 Systems of Linear Equations

27. Complete all the steps in Example 9 (p. 19)
without involving fractions until the last
step.

28. Find all the solutions of this nonlinear

system of equations:

{
3x2 − 5y3 = −123
7x2 + 4y3 = 136

29. Let

{
3x3 − ln y = 77
2x3 + ln y3 = 66

. Find all the solu-

tions of this nonlinear system. (Here ln =
loge.)

30. a. Using the notation ri ← ˛ rj + ri,
describe the steps used in the row re-
duction of Example 8 (p. 14) .

b. Use the systematic approach de-
scribed in the text.

31. Solve the bacteria-nutrition problem when
the given data are as in the following ta-
ble and the nutrients are supplied daily in
amounts of 1800 units of N1, 1500 units of
N2, and 2500 units of N3. The answer states
the number of each type of bacterium to be
inserted in the culture.

B1 B2 B3

N1 2 1 5
N2 1 3 1
N3 3 1 7

32. Consider

⎡
⎣ 1 3 2 12

5 −7 1 7
−11 33 t 23

⎤
⎦

Investigate the system of linear equations
having this augmented matrix. Here t is
a parameter allowed to run over R. What
happens if t approaches 5? The moral here
is that the solution of a system of linear
equations may be a discontinuous function
of the data!

33. Explain why this is really a linear equation:
3x(2y + 5) + log(x2)− 2y(6 + 3x)
= 13 + 2 log x

34. Explain why this nonlinear system of equa-
tions is inconsistent if we allow only real
numbers (not complex numbers) as solu-
tions:{

3x2 + 4y3 = 7
−2x2 + 3y3 = 18

35. Solve this system of three linear equations:
−5 = x1 + 2x3 + 3x2, 4x2− 4x3 + 2x1 = 14,
x1 + 2 + x3 + 3x2 = 0

36. Consider

{
7 ln(x3) + 2 ln(x2) + y2 = 77

2 ln x + 5y2 = 16

Solve this pair of equations for x and y us-
ing logarithms to base e.

37. You have seen in General Exercises 28, 29,
33, 34, and 36 examples of nonlinear equa-
tions that yield to the techniques of chang-
ing variables. Linear changes of variables
in linear equations can also be used. Let{

3x− 2y = 4
7x + 5y = 21

. What system of equations

results from this system when we change
variables like this: x = u− v and y = u + v?

38. Let

{
3x1 − 5x2 = 17
−x1 + 2x2 = 23

. In this system of

equations make the change of variables
x1 = 2u1 + 5u2 and x2 = u1 + 3u2. The
new system of equations, involving u1 and
u2, can be much simpler than the original
system of equations. You should find that
x1 = 149 and x2 = 86.

39. There exists a matrix in reduced row ech-
elon form such that one column can be
removed, leaving a matrix that is also in re-
duced row echelon form. Find one or more
examples of this phenomenon.
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SECTION 1.1 Solving Systems of Linear Equations 31

40. Consider the matrices

[
3 6 5
1 −1 0

]
and[

4 5 5
2 7 5

]
: Are these two matrices row

equivalent to each other? Why or why not?

41. Let

{
2x− 3y = −1
4x + 5y = 53

.

Solve this system of linear equations by con-
verting the augmented matrix to reduced
row echelon form.

42. Consider three planes in R
3 whose equa-

tions are 3x + y = 6, 5x + y + z = 6, and
3x + z = 1. Do they have a point in com-
mon? If so, find that point (or points).

43. Let

{
2x− 3y = −1
4x + 5y = 53

.

Solve this system of linear equations by con-
verting the augmented matrix to reduced
row echelon form.

44. Criticize this solution of a system of three
linear equations:−x+y = 1, 2x+y = 4, and
3x− y = 2. To solve this, we can ignore the
third equation because the first two equa-
tions by themselves give us x = 1 and y = 2.
Hence, the solution is (1; 2).

45. Let

⎧⎨
⎩

2x1 + 3x2 − x3 = −5
4x1 − x2 + 2x3 = 24
3x1 + x2 − 3x3 = −8

.

Solve this system using only integers.

46. (Challenging.) Establish that if a matrix has
all integer entries, then it is row equivalent
to a matrix in row echelon form having only
integer entries. Can we make the same as-
sertion for the reduced row echelon form?

47. If possible, give an example of a 1 × 5
matrix that is not in row echelon form.
Then give an example of a 1×5 matrix that
is in row echelon form but not in reduced
row echelon form.

48. Which of these matrices is in reduced
row echelon form: [0 2 2], [2 1 3],
[4 2 2], [0 0 1]?

49. Consider the matrices

⎡
⎣ 3 4 2

2 −3 1
5 7 1

⎤
⎦ and

⎡
⎣ 1 7 1

0 17 1
0 7 1

⎤
⎦ : Are these two matrices row

equivalent to each other? Why or why not?

50. Let

⎧⎨
⎩

3x− y = 2
2x + 5y = −4

7x− 25y = 1
.

Show that each pair of these equations has
a solution but the entire system does not.
Interpret geometrically.

51. Consider

[
0:780 0:563
0:913 0:659

][
x1

x2

]
=

[
0:217
0:254

]
Which solution is better?
x̂ = (0:341;−0:087) or
x̃ = (0:999;−1:001). Explain.

TRUE–FALSE EXERCISES 1.1

1. When written out in detail, the expression∑n
i=1 aij looks like this: ai1 + ai2 + · · · + ain.

2. When written out in detail, the expression∑n
j=1 aji is equivalent to ani + · · ·+ a2i + a1i.

3. With our standard notation, the numbers
ai1; ai2; : : : ; ain occupy column i in the n×n

matrix A:
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32 CHAPTER 1 Systems of Linear Equations

4. With our standard notation, the numbers
a1i; a2i; : : : ; ani occupy row i in the n × n

matrix A.

5. This matrix is in row echelon form:[
5 4 2
0 0 7

]

6. This matrix is in reduced row echelon form:[
0 1 3 0
0 0 0 1

]

7. None of these four matrices is in reduced
row echelon form:[

0 0
1 0

] [
0 1
1 0

] ⎡
⎣ 0 1 3 2

0 0 0 1
0 0 0 0

⎤
⎦

⎡
⎣ 0 1 3 0

0 0 0 1
0 0 0 0

⎤
⎦

8. This matrix is in reduced row echelon form:⎡
⎢⎢⎣

0 1 0 2
0 0 0 1
0 0 0 0
0 0 1 3

⎤
⎥⎥⎦

9. The following matrix is in reduced row ech-
elon form:⎡
⎢⎢⎣

0 1 7 0 6 8
0 0 0 1 5 3
0 0 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎦

10. This matrix is in row echelon form:[
5 3 2 1
0 3 2 4

]

11. This matrix is in reduced row echelon form:[
1 5 0 3
0 0 1 6

]

12. The number of pivots in a matrix is equal
to the number of rows that contain pivots.

13. These two matrices are row equivalent to
each other:[

2 1 0
1 3 2

] [
3 4 2
1 3 2

]
14. A row-equivalent pair of matrices is⎡

⎢⎢⎣
13 8 5 2

0 8 −7 4
0 0 17 3
0 0 0 12

⎤
⎥⎥⎦

⎡
⎢⎢⎣

11 0 0 0
0 6 0 0
0 0 13 0
0 0 0 −9

⎤
⎥⎥⎦

15. These two matrices are row equivalent to
each other:[

3 6 5
1 −1 0

] [
4 5 5
2 7 5

]
16. A row-equivalent pair of matrices is[

1 2 −1
2 7 −8

] [
1 0 3
0 1 −2

]
17. A non–row-equivalent pair of matrices is⎡

⎣ 1 3 0 0
0 0 4 0
0 0 0 2

⎤
⎦

⎡
⎣ 1 0 0 0

0 0 1 0
0 0 0 2

⎤
⎦

18. Let

⎧⎨
⎩

3x1 + 2x2 − 5x3 = −1
4x2 + x3 = 14
−2x3 = −4

If (x1; x2; x3) is a solution of this system of
equations, then x2 = 3.

19. Consider

⎧⎨
⎩

x1 + 3x2 + 7x3 = 2
4x2 + x3 = 8x1

2x3 + 2 + 3x1 = −11

The augmented matrix for the system is⎡
⎣ 1 3 7 0

0 4 1 8
2 2 3 −11

⎤
⎦

20. Let

{
5x4 + 2 sin y = 16
2x4 − 4 sin y = 4

By introducing some new variables, we can
use the row-reduction process to solve the
system.
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SECTION 1.1 Solving Systems of Linear Equations 33

21. If the elements of a matrix A are denoted
by aij or ai;j in the standard way, then a4;7 is
the fourth element in row seven.

22. A k × r matrix has k rows and r columns.

23. A k × r matrix has r rows and k columns.

24. A 7× 9 matrix has 9 rows.

25. A 9× 7 matrix has 7 columns.

26. Every pair of linear equations in two vari-
ables has a solution.

27. Every elementary row operation on a ma-
trix can be reversed by another elementary
row operation.

28. A typical linear equation in two variables, x

and y, would look like this: 5x + 7y + 3xy =
57.

29. A linear equation in two variables, u and v,
might look like this: 15v−57u = 3u−v+99.

30. Suppose that the pair of equations E1(x) =
0 and E2(x) = 0 is transformed into a
new pair with a row operation that leads to
E1(x) = 0 and E2(x) + ˛E1(x) = 0. If we
want to reverse this operation with a row
operation, we must first be sure that the
number ˛ is not zero.

31. Any 1 occurring in the reduced row echelon
form of a matrix is called a pivot element.

32. None of these four matrices is in row eche-
lon form:⎡
⎣ 0 1 3 0

0 0 0 4
0 0 0 0

⎤
⎦

⎡
⎣ 0 1 3 2

0 0 0 1
0 0 0 0

⎤
⎦

[
0 1
1 0

] [
0 0
1 0

]

33. There exists a nonzero matrix in reduced
row echelon form such that one column
can be removed, leaving a matrix in reduced
row echelon form.

34. Any pair of linear equations in three vari-
ables has a solution.

35. Some pair of linear equations in two vari-
ables has no solution.

36. Every equation of the form ax + by = c has
at least one solution.

37. If two matrices A and B are row equivalent
to each other, then the two matrices have
the same number of rows.

38. For any real number ˛ the operation of
multiplying a row by ˛ can be reversed with
a suitable row operation.

39. A typical linear equation in two variables, x

and y, might look like (x− 5)(y − 7) = 0.

40. Sometimes a system of two linear equations
with two unknowns will have exactly two
solutions.

41. A linear equation in two variables, u and v,
might look like this: 15v = 89− 23u.

42. Suppose that the pair of equations E1(x) =
0 and E2(x) = 0 is transformed into a
new pair with a row operation that leads
to E1(x) = 0 and E2(x) + ˛E1(x) = 0. We
can reverse the process with a suitable row
operation.

43. If a matrix A has a11 == 0, then a11 is a pivot
position.
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44. At least two of these four matrices are in
reduced row echelon form:[

1 1
0 10

] [
0 0
0 0

] ⎡
⎣ 0 1 3 0

0 0 0 1
0 0 0 0

⎤
⎦

⎡
⎣ 0 1 3 0

0 0 0 4
0 0 0 0

⎤
⎦

45. This matrix is in reduced row echelon form:[
0 3 6 1
0 0 0 7

]

46. The following matrix is in row echelon
form:⎡
⎢⎢⎣

0 1
3 1
0 0
0 1

⎤
⎥⎥⎦

47. This matrix is in row echelon form:⎡
⎣ 0 −9 3 7 6 7

0 0 0 6 2 −5
0 0 0 0 0 −3

⎤
⎦

48. Let

⎧⎨
⎩

2x3 = −3
5x1 + 2x2 − 7x3 = −1

x2 + 3x3 = 14

If (x1; x2; x3) is a solution of this system of
equations, then x1 = 1.

49. One and only one of these matrices is in
reduced row echelon form:

[
0 0
1 0

] [
0 1
1 0

]
⎡
⎢⎢⎢⎢⎣

0 1
0 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎣ 0 1 10 0

0 0 0 1
0 0 0 0

⎤
⎦

50. If the elements of a 9 × 9 matrix A are
denoted by aij in the standard way, then
a94 is the ninth element in column four.

51. The following matrix is in reduced row ech-
elon form:⎡
⎢⎢⎣

0 1 9 0 6 8
0 0 0 1 3 5
0 0 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎦

52. This matrix is in reduced row echelon form:⎡
⎢⎢⎣

0 1 0 2
0 0 0 1
0 0 0 0
0 0 1 3

⎤
⎥⎥⎦

53.

[
0 1 −2
1 0 3

]
∼

[
2 7 −8
1 2 −1

]

54. This matrix is in row echelon form:[
0 3 6 1
0 0 0 7

]

55. This matrix is in reduced row echelon form:[
0 1 3 0
0 0 0 1

]

56. A 5× 7 matrix has 7 columns and 5 rows.

57. Let

⎧⎨
⎩

3x1 + 2x2 − 5x3 = −1
4x2 + x3 = 14
−2x3 = −4

If (x1; x2; x3) is a solution of this system of
equations, then x3 = −2.

58. If the elements of a matrix A are denoted by
aij in the standard way, then a83 is the third
element in row eight.

59. These two matrices are row equivalent to
each other:[

3 4 2
1 3 2

]
∼

[
2 1 0
1 3 2

]
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60. There is a row operation on a matrix that
can be reversed by exactly the same row
operation.

61. This matrix is in row echelon form:⎡
⎢⎢⎣

0 1 4 2
0 0 5 3
0 0 0 7
0 0 0 0

⎤
⎥⎥⎦

62.

[
2 4 −2
6 21 −24

]
∼

[
1 0 3
0 1 −2

]

63. This matrix is in reduced row echelon form:⎡
⎣ 1 0 1 0

0 1 1 0
0 0 0 0

⎤
⎦

64. These two matrices are row equivalent to
each other:⎡
⎣ 1 3 5

0 −2 −3
0 3 8

⎤
⎦ ∼

⎡
⎣ 1 3 5

0 4 6
0 3 8

⎤
⎦

65. Elementary row operations on an aug-
mented matrix do not change the solution
set of the associated linear system.

66. All nonzero matrices have several row ech-
elon forms.

67. All of these four matrices are in row echelon
form:⎡
⎣ 0 1 3 2

0 0 0 1
0 0 0 0

⎤
⎦

⎡
⎣ 0 1 0 3

0 0 0 1
0 0 0 0

⎤
⎦

[
1 0
0 0

] [
1 0
0 1

]

68. Some matrices have several reduced row
echelon forms.

69. A typical nonlinear equation in two vari-
ables, x and y, may look like this:
5x2 + 7y2 = 75

MULTIPLE-CHOICE EXERCISES 1.1

Always select the first correct answer.

1. Which of these systems has no solution?

a.

{
2x1 − x2 = 3

x1 + x2 = 1
b.

{
2x1 − x2 = 3
4x1 − 2x2 = 6

c.

{
x1 + x2 = 3

2x1 − 2x2 = 6
d.

{
2x1 − x2 = 3
4x1 − 2x2 = 5

e. None of these.

2. Let

⎧⎨
⎩

7y + 3x + 4z = 10
11x + 2y = 5 + 4z

2z− x = 6− 3y

Using the x; y; z ordering of variables, what
is the augmented matrix of this system?

a.

⎡
⎣ 7 3 4 10

11 2 5 4
2 −1 6 3

⎤
⎦

b.

⎡
⎣ 7 3 4 10

11 2 −4 5
2 −1 3 6

⎤
⎦

c.

⎡
⎣ 3 7 4 10

11 2 −4 5
−1 3 2 6

⎤
⎦

d.

⎡
⎣ 3 7 4 10

11 2 4 5
−1 −3 2 6

⎤
⎦

e. None of these.
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36 CHAPTER 1 Systems of Linear Equations

3. Let A =

⎡
⎣ 4 3 1

2 2 −1
10 8 1

⎤
⎦

Which of these matrices is row equivalent
to A?

a.

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ b.

⎡
⎣ 3 0 0

0 2 5
0 0 5

⎤
⎦

c.

⎡
⎣ 0 0 0

0 2 0
0 0 3

⎤
⎦ d.

⎡
⎣ 4 3 1

0 2 −1
0 0 1

⎤
⎦

e. None of these.

4. Consider

⎡
⎣ 2 0 6 0

0 3 −6 0
0 0 0 0

⎤
⎦

If this is an augmented matrix, the solution
set of the linear system is

a. All multiples of

⎡
⎣ −3

2
1

⎤
⎦ b.

⎡
⎣ −3

2
0

⎤
⎦

c. All multiples of

⎡
⎣ −6

6
0

⎤
⎦

d. All multiples of

⎡
⎣ 3

2
1

⎤
⎦

e. None of these.

5. Consider

{
tx1 − (2t)x2 = 5
3x1 + (6t)x2 = −7

Find all values of the parameter t such that
this system does not have a solution.
a. 0 b. 0;−1 c. 6; 0 d. 1
e. None of these.

6. If the augmented matrix of a system con-
tains the row [0 0 0 0 0 1], we can
conclude that the system
a. Has a unique solution.
b. Has many solutions.

c. Has infinitely many solutions.
d. Is inconsistent.
e. None of these.

7. If the augmented matrix of a system of
equations has [0 0 0 0 0 −1] as
one of its rows, what conclusion can be
drawn about the system?
a. It is inconsistent.
b. It has a unique solution.
c. It has many solutions.
d. It has five unknowns.
e. None of these.

8. What is the solution of the system whose

augmented matrix is

⎡
⎣ 1 2 −7
−1 −1 1

2 1 4

⎤
⎦?

a. This system has no solution.
b. (−5; 6) c. (−7; 1; 4) d. (5;−6)
e. None of these.

9. Let

⎡
⎣ 2 −3 2 1

0 1 −4 2
0 2 −8 5

⎤
⎦ be an augmented

matrix. This system has how many solu-
tions?
a. None. b. At least two.
c. At most one. d. Exactly one.
e. None of these.

10. Consider the system of equations whose

augmented matrix is

[
14 8 a

21 12 b

]
: Which

assertion is correct?
a. It has a solution for some choices of a

and b.
b. It is inconsistent for all choices of a and

b.
c. It has a solution for all choices of a and b.
d. It has a solution only in the case a = 0.
e. None of these.
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SECTION 1.1 Solving Systems of Linear Equations 37

11. Define five matrices: A =

[
1 3
0 0

]

B =

[
1 0
0 1

]
C =

[
0 1
0 0

]

D =

[
0 0
0 0

]
E =

[
5 15
1 3

]
We use the symbol∼ to mean is row equiv-
alent to. Which relation is correct?
a. A ∼ B b. C ∼ D c. E ∼ A
d. E ∼ D e. None of these.

12. Which matrix is row equivalent to

[
1 3
2 6

]
?

a.

[
1 3
0 6

]
b.

[
1 1
0 0

]
c.

[
0 0
1 3

]

d.

[
1 0
0 0

]
e. None of these.

13. Which of these matrices is not row equiva-
lent to the other three?

a.

⎡
⎣ 2 1 4

3 −2 5
0 −7 −2

⎤
⎦ b.

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

c.

⎡
⎣ 0 0 4

0 3 0
2 0 0

⎤
⎦ d.

⎡
⎣ 1 0 0

4 2 0
5 6 3

⎤
⎦

e. None of these.

14. Which matrix is in reduced row echelon
form?

a.

⎡
⎣ 1 −3 2 1

0 1 4 2
0 0 1 1

⎤
⎦ b.

⎡
⎣ 1 3 0 4

0 0 1 7
0 0 0 1

⎤
⎦

c.

⎡
⎣ 2 0 0 3

0 3 0 1
0 0 5 4

⎤
⎦ d.

⎡
⎣ 1 3 0 2

0 0 1 4
0 0 0 0

⎤
⎦

e. None of these.

15. Let A =

⎡
⎢⎢⎣

1 −3 0 0
0 1 5 0
0 0 0 1
0 0 3 −6

⎤
⎥⎥⎦

What is the reduced row echelon form of A?

a.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎣

1 −3 0 0
0 1 5 0
0 0 3 −6
0 0 0 1

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 3 −6
0 0 0 0

⎤
⎥⎥⎦ d.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −2
0 0 0 0

⎤
⎥⎥⎦

e. None of these.

16. Let A =

⎡
⎣ 1 3 4 2

2 2 4 −3
6 −2 4 4

⎤
⎦

What is the reduced row echelon form of A?

a.

⎡
⎣ 1 3 4 2

0 −4 −4 −7
0 −20 −20 −8

⎤
⎦ b.

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦

c.

⎡
⎣ 1 0 1 0

0 1 1 0
0 0 0 1

⎤
⎦ d.

⎡
⎣ 1 0 0 0

0 1 1 0
0 0 0 1

⎤
⎦

e. None of these.

17. Consider this matrix:

⎡
⎣ 1 2 3 4

5 6 7 8
6 7 8 7

⎤
⎦

What is its reduced row echelon form?

a.

⎡
⎣ 1 2 3 4

0 1 2 3
0 0 0 2

⎤
⎦ b.

⎡
⎣ 1 0 −1 −2

0 1 2 3
0 0 0 1

⎤
⎦

c.

⎡
⎣ 1 2 3 4

0 1 2 3
0 0 0 1

⎤
⎦ d.

⎡
⎣ 1 0 −1 0

0 1 2 0
0 0 0 1

⎤
⎦

e. None of these.
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38 CHAPTER 1 Systems of Linear Equations

18. Consider this matrix:

⎡
⎣ 1 2 4 7

0 1 1 2
1 4 6 12

⎤
⎦

What is its reduced row echelon form?

a.

⎡
⎣ 1 2 4 7

0 1 1 2
0 0 0 1

⎤
⎦ b.

⎡
⎣ 1 0 2 3

0 1 1 2
0 0 0 1

⎤
⎦

c.

⎡
⎣ 1 0 1 1

0 1 1 2
0 0 0 1

⎤
⎦ d.

⎡
⎣ 1 0 2 0

0 1 1 0
0 0 0 1

⎤
⎦

e. None of these.

19. We are pairing row operations with their in-
verses, using the notation suggested in the
text. Which pair is incorrect? (In each case,
assume i == j and ˛ == 0.)
a. ri ↔ rj and ri ↔ rj

b. ri ← ˛ri and ri ← ˛−1ri

c. ri ← ˛rj + ri and ri ← (1=˛)rj + ri

d. ri ← ri + ˛rj and ri ← ri − ˛rj.
e. None of these.

20. Which of these systems has a solution?

a.

{
2x1 − x2 = 3

x1 + x2 = 1
b.

{
2x1 − x2 = 3
4x1 − 2x2 = 6

c.

{
x1 + x2 = 3

2x1 − 2x2 = 6
d.

{
2x1 − x2 = 3
4x1 − 2x2 = 5

e. None of these.

21. Consider

⎡
⎢⎢⎣

1 −3 0 0
0 1 5 0
0 0 0 1
0 0 3 −6

⎤
⎥⎥⎦

What is a row echelon form of this matrix?

a.

⎡
⎢⎢⎣

1 −3 0 0
0 1 5 0
0 0 3 −6
0 0 0 1

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 3 −6
0 0 0 0

⎤
⎥⎥⎦ d.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −2
0 0 0 0

⎤
⎥⎥⎦

e. None of these.

22. What is the solution of the system whose

augmented matrix is

⎡
⎣ 1 2 7
−1 −1 −1

2 1 −4

⎤
⎦?

a. This system has no solution.
b. (−5; 6)
c. (−7; 1; 4)
d. (5;−6)
e. None of these.

23. Consider these three equations:⎧⎨
⎩

2x + y + z = 7
2x + y = 8
−x + z = −4

They define three planes in three-space.
Which assertion is correct?
a. This system has no solution.
b. This system has many solutions.
c. This system has one and only one solu-

tion, namely (3; 2;−1):
d. (2;−1; 3) is one solution.
e. None of these.

24. Consider this augmented matrix:⎡
⎢⎢⎣

1 0 0 −2 −3
0 2 2 0 0
0 0 1 3 1
−2 3 2 1 5

⎤
⎥⎥⎦

Which assertion is correct?
a. The system has many solutions.
b. The system has one and only one solu-

tion.
c. (−1; 2;−2; 1) is a solution.
d. (−3;−1; 1; 0) is a solution.
e. None of these.

25. In R
3, the equation 2x + 3y + 4z = 24 is the

equation of a plane. Which point is not on
this plane?
a. (0; 8; 0) b. (0; 0; 6) c. (12; 0; 0)
d. (2; 8; 0) e. None of these.
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26. Consider

{
2x− 3y = 5
6x− 9y = 7

. This system has

a. Exactly one solution.
b. Exactly two solutions.
c. No solutions.
d. Infinitely many solutions.
e. None of these.

27. The system

{
2x− 7y = 41
4x + 3y = −3

has

a. Exactly one solution.
b. Exactly two solutions.
c. No solutions.
d. Infinitely many solutions.
e. None of these.

28. Let

{
2x− 3y = 5
6x− 9y = 15

. This system has

a. Exactly one solution.
b. Exactly two solutions.
c. No solutions.
d. Infinitely many solutions.
e. None of these.

29. Consider

⎧⎨
⎩

x + 3y + 2z = 5
2x + y + z = 2

4x− y + 3z = 1

This system has
a. One solution.
b. Two solutions.
c. No solutions.
d. Infinitely many solutions.
e. None of these.

30. Let

⎧⎨
⎩

x + 3y + 2z = 0
2x + y + z = 0

4x− y + 3z = 0

This system has
a. Only one solution.
b. Three solutions.
c. No solutions.
d. Infinitely many solutions.
e. None of these.

31. The system

{
x + 3y + 2z = 0

2x + y + z = 0
has

a. A unique solution.
b. Infinitely many solutions.
c. No solutions.
d. At least one solution.
e. None of these.

32. What is the point of intersection of the lines
described by these equations 4x + 2y = 0,
x− 2y = 2, 2x + 6y = −4?
a. (2;−4) b. (4; 1) c. (−2; 0)
d. There is no point of intersection.
e. None of these.

33. Which matrix is in reduced row echelon
form?

a.

[
0 0
1 0

]
b.

[
0 1
1 0

]

c.

⎡
⎣ 0 1 3 2

0 0 0 1
0 0 0 0

⎤
⎦ d.

⎡
⎣ 1 5 0 −7 0

0 0 1 3 0
0 0 0 0 1

⎤
⎦

e. None of these.

34. The reduced row echelon form of⎡
⎢⎢⎣

0 3 0 5
4 0 0 −3
0 0 1 7
8 3 1 6

⎤
⎥⎥⎦ is

a.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎣

1 0 0 −3=4
0 1 0 5=3
0 0 1 7
0 0 0 0

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 7
0 0 0 0

⎤
⎥⎥⎦ d.

⎡
⎢⎢⎣

1 0 0 3
0 1 0 5
0 0 1 7
0 0 0 0

⎤
⎥⎥⎦

e. None of these.
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40 CHAPTER 1 Systems of Linear Equations

35. Let A =

⎡
⎢⎢⎣

7 3 5 −8
0 2 6 11
0 0 5 3
0 0 0 9

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

8 0 0 0
3 0 0 0
2 2 4 0
6 9 8 5

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣

4 0 0 0
1 7 0 0
5 4 9 0
6 3 2 8

⎤
⎥⎥⎦

For these matrices which of these state-
ments is true?
a. A ∼ C b. B ∼ 0 c. A ∼ B
d. B ∼ C e. None of these.

36. What is the point of intersection for this
pair of equations: 3x2 + x1 = 17 and
2x1 + 7x2 = 39?
a. (1;−4) b. (4; 1) c. (2; 5)
d. There is no point of intersection.
e. None of these.

COMPUTER EXERCISES 1.1

1. Use mathematical software such as Matlab,
Maple, or Mathematica to solve one or more
of the General Exercises in this section: 8, 12,
15, 20, 22, 31, 45.

2. Use mathematical software to find the re-
duced row echelon form of a 20× 20 matrix
containing random integers in [−20, 20].

3. Write a computer program for computing the
reduced row echelon form of a given m × n

matrix A. In the first version of the program,
do not attempt any pivoting strategy. In other
words, just use the natural ordering of the
rows in the matrix as they are given and as-
sume that no zero pivot entries are encoun-
tered. (Don’t worry about the code not work-
ing if division by zero arises.) By the use of
comments in the code, indicate the portion
of the code that does the forward elimination
phase, backward elimination phase, and scal-
ing phase. Test the code on several matrices.

4. (Continuation.) In the second version of
the program, generalize the code to handle
matrices with zero pivots and zero rows and

columns. Test the code on matrices such as
this one:⎡
⎢⎢⎢⎢⎣

4 12 2 0 16 1 7 26
6 18 −6 0 42 −9 −57 −36
0 0 0 0 0 0 0 0
−2 −6 2 0 −14 3 19 12

1 3 3 0 −1 2 17 25

⎤
⎥⎥⎥⎥⎦

5. (Continuation.) In the third version of the
program, modify the general code to use the
Basic Linear Algebra Subprograms (BLAS)
for carrying out the replacement ( axpy),
swap ( swap), and scale ( scale)
operations. (As originally proposed by Law-
son, Hanson, Kincaid, and Krogh [1979],
the BLAS are routines that provide standard
building blocks for performing basic vector
and matrix operations. They are efficient,
portable, and widely available in computer
systems. They find common use in the de-
velopment of high-performance linear alge-
bra software. They can be downloaded at
www.netlib.org/blas )

6. (Continuation.) In the final version of the
program, use the Gauss-Jordan method.
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SECTION 1.2 Vectors and Matrices 41

In the Gauss–Jordan algorithm (without piv-
oting) at the kth major step, the pivot entry
in row k is scaled to 1 and multiples of row k

are subtracted from all the other rows so that
all elements above and below the pivot ele-
ment are 0. In other words, the scaling phase
is done first and the forward and backward
elimination phases are done together.

7. After seeing page after page of simple nu-
merical examples, usually involving small
integers, let’s explore a more realistic exam-
ple. Find the reduced row echelon form of
this augmented matrix:[

1325:9627 −23:874191 4513:1622
−0:31224877 531:26915 −25492:204

]

1.2 VECTORS AND MATRICES

“Mathematics is the queen of the sciences.
—KARL FRIEDRICH GAUSS (1777–1855),

ONE OF THE GREATEST MATHEMATICIANS OF ALL TIMES

The word mathematics comes from the Greek � ′����� (máth-ema),
meaning science, knowledge, or learning and ���������o′	
(math-ematikós) meaning fond of ”learning.

—EN.WIKIPEDIA.ORG

We continue the discussion of vectors and matrices begun in Section 1.1.
These concepts play a central role in linear algebra, especially the part of
the subject that concerns systems of linear equations.

Vectors

A vector is conventionally represented as a vertical column of numbers,
such as

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ v =

⎡
⎢⎢⎣

3
72
−24
5221

⎤
⎥⎥⎦ w =

⎡
⎣ 2

5
0

⎤
⎦

Vectors can also be written as horizontal arrays. In some contexts, either
form can be used. However, when sums and products of vectors and matri-
ces occur, we must observe certain conventions. For typographical reasons,
such as writing vectors in-line and saving space, we often write a vector
as x = (x1; x2; : : : ; xn) or as x = [x1; x2; : : : ; xn]T . Here the superscript T
means transpose. It serves to turn a vertical array into a horizontal one
and a horizontal array into a vertical one. The entries in the vector are its
components.
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42 CHAPTER 1 Systems of Linear Equations

For a fixed value of n, the set of all vectors having n components is
denoted by R

n. Thus, R
1 is just the real numbers R; R

2 is the familiar two-
dimensional plane; R

3 is the three-dimensional space of our universe. The
remaining cases, n = 4; 5; : : : do not have familiar geometric interpreta-
tions.

The special vector [0; 0; : : : ; 0]T in R
n is the zero vector or origin. It

is also written as (0; 0; : : : ; 0) and is denoted by 0. The addition of two
members of R

n is effected by the following rule, which is termed vector
addition:

x + y =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

y1

y2

...
yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1 + y1

x2 + y2

...
xn + yn

⎤
⎥⎥⎥⎦

For example, we can write (1; 3; 7) + (5;−6; 3) = (6;−3; 10) or [1; 3; 7]T +
[5;−6; 3]T = [6;−3; 10]T or⎡

⎣ 1
3
7

⎤
⎦ +

⎡
⎣ 5
−6

3

⎤
⎦ =

⎡
⎣ 6
−3
10

⎤
⎦

We say that the addition of two (or more) vectors is done component-
wise—that is, component-by-component. Notice that the zero vector in R

n

has this property: x + 0 = x, for all x in R
n.

The geometry for the addition of two vectors in R
2 is shown in Fig-

ure 1.3. We form the parallelogram with the given vectors as two sides; their
sum is the diagonal vector in the parallelogram. The diagram on the left
shows that (4; 1) + (2; 4) = (6; 5), while the one on the right shows that
(−5; 1) + (2; 3) = (−3; 4).

(2, 4)

(–5, 1)

(–3, 4)

(4, 1)

(6, 5)

(2, 3)

0 0

3
4

x

y

x

y

FIGURE 1.3 Addition of pairs of vectors in R
2.
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The multiplication of a vector by a scalar (i.e., a real number c) is also
done component-by-component:

c x = c

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cx1

cx2

...
cxn

⎤
⎥⎥⎥⎦

For example, we have

4

⎡
⎣ 3

7
−5

⎤
⎦ =

⎡
⎣ 12

28
−20

⎤
⎦

Figure 1.4 shows scalar multiples of vectors in R
2.

(2, 6)

(1, 3)

0

(3, 2)

2(1, 3) = (2, 6)
–(3, 2) = (–3, –2)

(–3, –2)

x

y

FIGURE 1.4 Scalar multiples of vectors in R
2.

Linear Combinations of Vectors

With these two new definitions, one can form linear combinations of
vectors, such as

3

⎡
⎣ 1

7
2

⎤
⎦− 5

⎡
⎣ 2
−3

4

⎤
⎦−

⎡
⎣ 1

1
1

⎤
⎦ =

⎡
⎣ −8

35
−15

⎤
⎦

These concepts can be put to immediate use in the subject of linear equa-
tions. Observe that the system of equations⎧⎨

⎩
3x1 − 5x2 + x3 = 11

2x1 + 4x2 − 3x3 = −13
4x1 − x2 + 5x3 = 4
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44 CHAPTER 1 Systems of Linear Equations

is the same as

x1

⎡
⎣ 3

2
4

⎤
⎦ + x2

⎡
⎣ −5

4
−1

⎤
⎦ + x3

⎡
⎣ 1
−3

5

⎤
⎦ =

⎡
⎣ 11
−13

4

⎤
⎦

For another example, consider the vectors u = (5; 7) and v = (−1; 3).
One can easily calculate a particular linear combination of them such as

3u + 4v = 3

[
5
7

]
+ 4

[ −1
3

]
=

[
11
33

]

It is more complicated to reverse the direction; that is, if the vector w =
(11; 33) is given, find the linear combination of u and v that equals w. We
then want to solve the following equation for a and b:

au + bv = w

Undertaking this task, we have

a

[
5
7

]
+ b

[ −1
3

]
=

[
11
33

]
or

{
5a− b = 11

7a + 3b = 33
or

[
5 −1 11
7 3 33

]

The augmented matrix can be transformed to reduced row echelon form
as follows (where we took special care to avoid fractions):

[
5 −1 11
7 3 33

]
∼

[
5 −1 11
2 4 22

]
∼

[
1 2 11
5 −1 11

]

∼
[

1 2 11
0 −11 −4

]
∼

[
1 2 11
0 1 4

]

∼
[

1 0 3
0 1 4

]

EXAMPLE 1 Let e1 = (1; 0) and e2 = (0; 1). These are two vectors in R
2.

Is every point in R
2 a linear combination of e1 and e2?
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SOLUTION Yes, because for any x ∈ R
2,

x =

[
x1

x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
= x1e1 + x2e2

Here is a harder problem.

EXAMPLE 2 Is every point of R
2 a linear combination of the vectors

u = (5; 2) and v = (7; 3)?

SOLUTION We try to solve for scalars ˛ and ˇ in the equation

˛u + ˇv = ˛

[
5
2

]
+ ˇ

[
7
3

]
=

[
b1

b2

]
= b

where b = (b1; b2) is an arbitrary vector in R
2. The augmented matrix and

its reduced row echelon form are[
5 7 b1

2 3 b2

]
∼

[
5 7 b1

4 6 2b2

]
∼ · · · ∼

[
1 0 3b1 − 7b2

0 1 −2b1 + 5b2

]

The reader can fill in the omitted steps. The answer is yes, and we find these
values: ˛ = 3b1 − 7b2 and ˇ = −2b1 + 5b2 for any vector b ∈ R

2.

EXAMPLE 3 Is the vector w = (−1; 3; 7) a linear combination of the
vectors u = (4; 2; 7) and v = (3; 1; 4)?

SOLUTION We want to solve the vector equation

x

⎡
⎣ 4

2
7

⎤
⎦ + y

⎡
⎣ 3

1
4

⎤
⎦ =

⎡
⎣ −1

3
7

⎤
⎦ or

⎧⎨
⎩

4x + 3y = −1
2x + y = 3

7x + 4y = 7

The augmented matrix and its reduced row echelon form are⎡
⎣ 4 3 −1

2 1 3
7 4 7

⎤
⎦ ∼

⎡
⎣ 1 0 5

0 1 −7
0 0 0

⎤
⎦

Thus, we obtain x = 5 and y = −7. We can verify the results: 5(4; 2; 7) −
7(3; 1; 4) = (−1; 3; 7). Most vectors in R

3 are not linear combinations of
u = (4; 2; 7) and v = (3; 1; 4). The vectors that are linear combinations of
u and v lie on a plane in R

3. Why?
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46 CHAPTER 1 Systems of Linear Equations

Matrix--Vector Products

Now let A be an m×n matrix, thought of as a collection of column vectors.
We can write

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ = [a1 a2 · · · an]

Here aj denotes the jth column vector in A: aj =

⎡
⎢⎢⎢⎣

a1j

a2j

...
amj

⎤
⎥⎥⎥⎦.

DEFINITION

The matrix–vector product Ax of an m× n matrix A and a column vector
x = (x1; x2; : : : ; xn) is defined to be

A x = x1 a1 + x2 a2 + · · · + xn an

Here the scalars xj are the components of the column vector x, and the
column vectors aj are the columns of A.

We describe Ax as a linear combination of the columns in A with
coefficients taken to be the components of the vector x. Suppose that A has
dimensions m× n, and let the generic entries in A be written as aij; where
1 ≤ i ≤ m and 1 ≤ j ≤ n. Using the columns aj as above, we write

A =
[

a1 a2 · · · an

]
By the definition above, we have

Ax =
[

a1 a2 · · · an

]
⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦=

n∑
j=1

xjaj
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SECTION 1.2 Vectors and Matrices 47

To recover one component of Ax, we write

(Ax)i =
n∑

j=1

xj[aj]i =
n∑

j=1

xjaij =
n∑

j=1

aijxj = rix

This last expression is a genuine matrix product of a 1 × n vector ri =
[ai1; ai2; : : : ; ain] and an n× 1 vector x = [x1; x2; : : : ; xn]T . In this situation,
we are denoting the ith row of A by ri. Thus, to get the ith component of
Ax, we compute the vector product

rix = [ai1 ai2 · · · ain]

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =

n∑
j=1

aij xj

EXAMPLE 4 Express as a single vector the product

⎡
⎣ 1 5

3 1
2 4

⎤
⎦ [

2
7

]
.

SOLUTION We must carry out a calculation to do this:

2

⎡
⎣ 1

3
2

⎤
⎦ + 7

⎡
⎣ 5

1
4

⎤
⎦ =

⎡
⎣ 2

6
4

⎤
⎦ +

⎡
⎣ 35

7
28

⎤
⎦ =

⎡
⎣ 37

13
32

⎤
⎦

EXAMPLE 5 Express as a single vector the product⎡
⎢⎢⎣

1 2 3
4 5 6
7 8 9

10 11 12

⎤
⎥⎥⎦

⎡
⎣ x1

x2

x3

⎤
⎦

SOLUTION Again, we must carry out the multiplication of a matrix times
a vector, as follows:

x1

⎡
⎢⎢⎣

1
4
7

10

⎤
⎥⎥⎦ + x2

⎡
⎢⎢⎣

2
5
8

11

⎤
⎥⎥⎦ + x3

⎡
⎢⎢⎣

3
6
9

12

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1 + 2x2 + 3x3

4x1 + 5x2 + 6x3

7x1 + 8x2 + 9x3

10x1 + 11x2 + 12x3

⎤
⎥⎥⎦

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 48 --- #48
�

�

�

�

�

�

48 CHAPTER 1 Systems of Linear Equations

The Span of a Set of Vectors

DEFINITION

The set of all linear combinations of a set of vectors is called the span of that
set of vectors.

Our work in the preceding text shows that the span of the set of columns of
a matrix A is the set of all vectors Ax, where x runs over all vectors having
the right number of entries. Explicitly, if A is m × n, then the span of the
set of its columns is

Col(A) = Span{a1; a2; : : : ; an} = {Ax : x ∈ R
n}

The notation R
n signifies the set of all vectors having n components. We

explore this topic more fully in Section 5.1.
The span of the set of columns in a matrix A is called the column

space of A and is written Col(A). Here are some relevant examples. From
Example 1, the span of the set consisting of the two vectors e1 = (1; 0) and
e2 = (0; 1) is R

2; that is,

Span{e1; e2} = Col(I2) = R
2

From Example 2, the span of the pair (5; 2) and (7; 3) is R
2 as well.

Obviously, the span of the set of three vectors e1 = (1; 0; 0); e2 =
(0; 1; 0), and e3 = (0; 0; 1) is R

3; that is,

Span{e1; e2; e3} = Col(I3) = R
3

By referring to the calculations already done in Example 3, the span of the
pair (4; 2; 7) and (3; 1; 4) contains (−1; 3; 7), but not (1; 0; 0). For the last
part of this example, we let

x

⎡
⎣ 4

2
7

⎤
⎦ + y

⎡
⎣ 3

1
4

⎤
⎦ =

⎡
⎣ 1

0
0

⎤
⎦

We form the augmented matrix and undertake the row reduction:⎡
⎣ 4 3 1

2 1 0
7 4 0

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

The system has no solution and is therefore characterized as inconsistent.
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SECTION 1.2 Vectors and Matrices 49

The next example is more complicated.

EXAMPLE 6 Give a simple description for the span of {u; v}, where
u = (4; 2; 7) and v = (3; 1; 4). (Ideally, there will be a simple test that can
be applied to a vector to determine whether it is or is not in the span of a
given set.)

SOLUTION Following Example 2, we form an augmented matrix and
carry out the row reduction:

[
u v b

]
=

⎡
⎣ 4 3 b1

2 1 b2

7 4 b3

⎤
⎦ ∼ · · · ∼

⎡
⎣ 1 0 4b2 − b3

0 1 b1 − 2b2

0 0 b1 + 5b2 − 2b3

⎤
⎦

For the consistency of this system, we require b1 + 5b2 − 2b3 = 0. This
condition on vector b is necessary and sufficient for b to be in the span of
u and v. The simple description asked for could be that the span of {u; v}
consists of all vectors b whose components satisfy the equation b1 + 5b2 −
2b3 = 0. We write

Span{u; v} = {b ∈ R
3 : b1 + 5b2 − 2b3 = 0}

Thus most vectors in R
3 are not linear combinations of u = (4; 2; 7) and

v = (3; 1; 4). The vectors that are linear combinations of u and v lie on the
plane b1 + 5b2 − 2b3 = 0 in R

3.

EXAMPLE 7 Is the vector (42; 6; 76) in the span of this set of three
vectors: (1; 2; 11), (3; 1; 4), (7;−4; 3)?

SOLUTION It will be advantageous to think of all these vectors as column
vectors. The question is whether a solution exists for this system of linear
equations:

x1

⎡
⎣ 1

2
11

⎤
⎦ + x2

⎡
⎣ 3

1
4

⎤
⎦ + x3

⎡
⎣ 7
−4

3

⎤
⎦ =

⎡
⎣ 42

6
76

⎤
⎦

This equation can be written in equivalent forms as explained previously:⎧⎨
⎩

x1 + 3x2 + 7x3 = 42
2x1 + x2 − 4x3 = 6
11x1 + 4x2 + 3x3 = 76

or

⎡
⎣ 1 3 7 42

2 1 −4 6
11 4 3 76

⎤
⎦
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50 CHAPTER 1 Systems of Linear Equations

Here we see one numerical vector as a presumed linear combination of
three other numerical vectors. Solving the system of equations answers the
question of whether the numerical vector on the right is in the span of
the three numerical vectors on the left. Only by solving the system can one
answer that question. Turning this over to mathematical software, such as
Matlab, we find that the answer is yes, and that the needed coefficients
are x1 = 7=2 = 3:5, x2 = 147=19 ≈ 7:7368, and x3 = 83=38 ≈ 2:1842.
Check: 133(1; 2; 11) + 294(3; 1; 4) + 83(7;−4; 3) = 38(42; 6; 76).

Interpreting Linear Systems

In general, we can write a system of linear equations as

Ax = b

Usually, we are given the m×n coefficient matrix A and the m-component
righthand-side vector b and wish to solve for the n-component unknown
vector x.

One can interpret b as a vector or as a matrix having only one column.
The important new idea is that a matrix times a vector will be interpreted
as a linear combination of the columns of the matrix, and the coefficients
in this linear combination are precisely the components of the vector. The
conventions of matrix algebra require that we write the vector x in the
expression Ax as a column vector, that is, an n × 1 matrix. (If we wrote x
as a row vector, the product Ax would not be defined.)

Note that for the product Ax to be defined, there must be a match
between the number of columns in A and the number of components in x.
If the vectors x and b are interpreted as matrices (of sizes n× 1 and m× 1,
respectively), then the matrix equation Ax = b can be written in several
equivalent forms, as shown on the next page.

Now we have seen various interpretations of a system of linear equa-
tions. These interpretations will occur over and over again in our subse-
quent work. We can use these new concepts to understand a system of
equations Ax = b. If A and b are given, such a system challenges us to de-
termine whether b is in the span of the columns of A and, if so, to find the
coefficients needed to express b as a linear combination of the columns of A.

One now has a loftier viewpoint for the problem of solving a system of
linear equations. Think of such a problem in the form Ax = b and apply
the general theory appropriate to such problems. They are conceptually
much simpler in this form, and the field is now open to applying the vast
armamentarium of matrix theory to such a problem! At this moment, we
have discussed only the Gaussian elimination method for solving these
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SECTION 1.2 Vectors and Matrices 51

systems, but later other methods will be introduced. (Some of these meth-
ods are based upon a completely different approach, which allows one to
obtain solutions of low precision quickly and solutions of high precision
with increasing effort and time.) Many investigators are working on ever-
more-efficient ways of solving extremely large systems of equations, often
taking advantage of special properties of systems that occur in applications.
(If you find this subject interesting, you can devote your life to it and be
paid for doing so!)

The following shows the different ways in which we can think of a
system of linear equations.

Equivalent Forms of Ax = b

1. The matrix form:
Ax = b

2. As a compact summation:

n∑
j=1

aijxj = bi (1 ≤ i ≤ m)

3. As linear equations in complete detail:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
am1x1 + am2x2 + · · · + amnxn = bm

4. As a matrix with vectors (arrays) in great detail:⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

5. As an augmented matrix:⎡
⎢⎢⎢⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

...
am1 am2 · · · amn bm

⎤
⎥⎥⎥⎦
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52 CHAPTER 1 Systems of Linear Equations

6. As a linear combination of the columns of A:

x1

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦ + x2

⎡
⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎦ + · · · + xn

⎡
⎢⎢⎢⎣

a1n

a2n
...

amn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

7. As a linear combination of the column vectors of A, denoted by aj:

x1a1 + x2a2 + · · · + xnan = b

Row-Equivalent Systems

The procedure developed in Section 1.1 now operates as follows. Given
the matrix A and the righthand-side b, form the augmented matrix [A b]
and carry out the row-reduction process on this matrix. The solutions of
the original system and the new system (obtained by applying the row-
reduction process) are the same. Here is the formal statement.

THEOREM 1

Let two linear systems of equations be represented by their augmented
matrices. If these two augmented matrices are row equivalent to each other,
then the solutions of the two systems are identical.

If [A | b] ∼ [B | c], then {x : Ax = b} = {x : Bx = c}, which is Theorem 1
in symbols.

In Section 1.1, the term row equivalent was briefly mentioned. We
repeat its definition here:

DEFINITION

Two matrices are row equivalent to each other if each can be obtained from
the other by applying a sequence of permitted row operations.

Recall that the permitted row operations are of the following types: replace-
ment (ri ← c rj + ri), scale (ri ← c ri with c == 0), and swap (ri ↔ rj).
Remember that in the replacement operation i == j.

Important facts are these: Two matrices are row equivalent to each
other if and only if they have the same reduced row echelon form. Every
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matrix has one and only one reduced row echelon form. (This fact is proved
in Section 1.3, Theorem 6, p. 79.)

We can show that these two matrices are row equivalent to each other:

A =

[
2 3 1
5 2 2

]
B =

[
8 1 3

10 4 4

]

because they are row equivalent to the same matrix in reduced row echelon
form:

A =

[
2 3 1
5 2 2

]
∼

[
1 0 4=11
0 1 1=4

]

B =

[
8 1 3

10 4 4

]
∼

[
1 0 4=11
0 1 1=4

]

EXAMPLE 8 Find all the solutions to the equation Ax = b, where A is
the matrix in Example 5 (p. 47) and b is the column vector with entries
[20; 47; 74; 101]T .

SOLUTION We form the augmented matrix and undertake the row
reduction:⎡

⎢⎢⎣
1 2 3 20
4 5 6 47
7 8 9 74

10 11 12 101

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 2 3 20
3 3 3 27
6 6 6 54
9 9 9 81

⎤
⎥⎥⎦

∼ · · · ∼

⎡
⎢⎢⎣

1 0 −1 −2
0 1 2 11
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Fortunately to enhance our understanding of linear equations, we have
here a new phenomenon: It is not clear exactly what the solution of the
problem is. The two nonzero rows in this last matrix stand for these two
equations: {

x1 − x3 = −2
x2 + 2x3 = 11

Here there are two conditions placed on a vector having three components,
and we expect some arbitrariness in the solution. The easiest way to express
the set of all solutions is to write the equations in the more suggestive
form
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54 CHAPTER 1 Systems of Linear Equations

{
x1 = −2 + x3

x2 = 11− 2x3

We are at liberty to assign any value we please to x3 and thereby obtain the
two other components of x. (The variable x3 is therefore called a free vari-
able.) For example, if x3 = 0, then x1 = −2 and x2 = 11, giving the solution
vector [−2; 11; 0]T . Or we can let x3 = 7, from which x = [5;−4; 7]T . It is
more illuminating to write the solution as follows:⎡

⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ −2

11
0

⎤
⎦ + s

⎡
⎣ 1
−2

1

⎤
⎦

Here s is a free parameter standing for the free variable x3. The reader
should study this equation carefully in order to understand where the vec-
tors on the right came from. It is a bit of sleight of hand to get from the
preceding pair of equations to the single vector equation. (General Exer-
cises 6, 9, 18, 19, 23, 31, 32, 38–40, and others, at the end of this section, give
some practice in this art.) This last form of the solution indicates that all
the solutions, taken together in R

3, form a line passing through the point
(−2; 11; 0) and having the direction vector (1;−2; 1). The variable x3 now
becomes a free parameter s to which we can assign arbitrary values. Each
value chosen leads to a solution of the system. The preceding equation gives
us the general solution of the system of equations. We recommend that
solutions to problems such as this be displayed as shown. Usually there will
be some constant vectors plus arbitrary multiples of one or more other
vectors.

It is customary to treat the variables in their natural order. But in the
example just given, we could go counter to this custom and treat x1 as the
free variable. (See General Exercise 19.) Now the general solution would be
written {

x3 = 2 + x1

x2 = 7− x1
or

⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 0

7
2

⎤
⎦ + t

⎡
⎣ 1
−2

1

⎤
⎦

In this equation, the free parameter t is used in place of x1. Notice that
the same set of solutions can be expressed as the vector [0; 7; 2]T plus any
scalar multiple of [1;−2; 1]T . It is easy to verify that this gives a solution for
every choice of the free parameter. The two forms given above describe the
same set of solutions. This general solution is the same line in R

3 as given
above because it has the same direction vector (1;−2; 1) and goes through
the point (−2; 11; 0) as we see by letting t = −2.
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Let us return to the algebraic construct involved in the product Ax,
where A is an m × n matrix. This expression has been defined previously.
From that definition, we obtain immediately

A(x + y) = Ax + Ay and A(˛x) = ˛Ax

if ˛ is a scalar. Because of these two properties, the mapping x 
→ Ax is
said to be linear. (This mapping notation is useful when we want to show
the effect of a mapping but do not wish to assign a name to it.) Showing
more detail in this calculation, we let ai denote column i in A and then
write

A(x + y) =
n∑

i=1

(x + y)iai =
n∑

i=1

(xi + yi)ai =
n∑

i=1

xiai +
n∑

i=1

yiai = Ax + Ay

A(˛x) =
n∑

i=1

(˛x)iai =
n∑

i=1

˛xiai = ˛

n∑
i=1

xiai = ˛Ax

With an induction argument, we obtain

A
( k∑

i=1

˛iui

)
=

k∑
i=1

˛iAui

In this equation, each ui is a column vector and the ˛i are scalars.

Consistent and Inconsistent Systems

Naturally, when presented with a system, we might ask first whether it
is consistent. If it is not, then some more advanced techniques in a later
chapter can be invoked to produce an approximate solution to the problem.
We recall that when a system of equations has at least one solution, we say
that the system is consistent ; otherwise it is inconsistent. Observe that a
system of the form Ax = 0 is always consistent because 0 is a solution.
(This is called the trivial solution of a homogeneous system, which we take
up in Section 1.3.) No similar remark can be made about the general case
Ax = b, when b == 0.

EXAMPLE 9 Here is an example of an inconsistent system of equations.
We show the original system and its reduced row echelon form.
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⎡
⎣ 3 −4 −8 40

6 −10 −26 95
9 −12 −24 125

⎤
⎦ ∼

⎡
⎣ 1 0 4 0

0 1 5 0
0 0 0 1

⎤
⎦

SOLUTION The second of these augmented matrices certainly exhibits
the inconsistency, because the third equation reads 0x1 + 0x2 + 0x3 = 1,
and this cannot be true. Because the second augmented matrix is the
reduced row echelon form of the first, we conclude that the first system
is inconsistent, although that fact is not obvious from the original matrix.
But the row reduction process reveals the inconsistency concealed in the
system.

The example just given illustrates the following theorem.

THEOREM 2

A system of linear equations, Ax = b, is consistent if and only if the vector b
is in the span of the set of columns of A.

PROOF Suppose that x is a vector such that Ax = b. When this is written
in detail as a linear combination of columns of A equaling the vector b, we
see that b is indeed a linear combination of the columns of A. The converse
is true: if b =

∑n

i=1 xiai where the ai are the columns of A and the xi are
scalars, then the vector x having components xi is a solution of the system
Ax = b.

THEOREM 3

Let A be an m × n matrix. The system of equations Ax = b is consistent
for all b in R

m if and only if the columns of A span R
m . In other words,

Col(A) = R
m .

PROOF By Theorem 2, consistency of the system for all b means that every
b in R

m is a linear combination of columns of A. In other words, the
columns of A span R

m.

THEOREM 4

Let A be an m × n matrix. The system of equations Ax = b is consistent for
all b in R

m if and only if each row of the coefficient matrix A has a pivot
position.
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PROOF Asserting that each row of the coefficient matrix A has a pivot
position is equivalent to asserting that the reduced row echelon form of
A has a pivot in each row. That, in turn, is equivalent to asserting that the
columns of A span R

m. By Theorem 3, this is equivalent to the system of
equations Ax = b being consistent for all b in R

m.

THEOREM 5

A system of linear equations is inconsistent if and only if its augmented
matrix has a pivot position in the last column.

PROOF Recall that the last column in the augmented matrix is the right-
hand-side vector. If the reduced row echelon form of the augmented
matrix has a pivot in the last column, the equation represented by the
row containing that pivot is inconsistent, because the coefficients of all
the variables are 0, whereas the righthand side has a 1. (It has the form
0x1 + 0x2 + · · · + 0xn = 1, and no solution is possible.) Conversely, if
there is no pivot element in the last column, values can be assigned to all
the variables, creating a solution. For example, assign arbitrary values to all
the free variables (if there are any) and use the reduced row echelon form
to find the values of all the other variables.

As mentioned previously, every matrix has a unique reduced row ech-
elon form. It is proven in Theorem 6 in Section 1.3, p. 79. (It’s not easy!)
This special relationship of row equivalence is denoted in this book by the
symbol ∼. For example, we know that the two following matrices, A and
B, are row equivalent to each other because each is row equivalent to I3:

A =

⎡
⎣ 1 2 3

4 5 6
10 8 7

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ = I3

B =

⎡
⎣ 17 31 −11

2 5 47
−19 3 13

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ = I3

This example shows that it may be easier to prove A ∼ I and B ∼ I than to
find a chain of row operations that go directly from A to B.

Caution

Theorem 5 involves the reduced row echelon form of an augmented matrix
[A | b], whereas Theorem 4 involves only the coefficient matrix A. The
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system of equations Ax = b may or may not be consistent for all b in R
m.

In Example 2, the system was found to be consistent for all righthand sides
b: [

5 7 b1

2 3 b2

]
∼

[
1 0 3b1 − 7b2

0 1 −2b1 + 5b2

]
The coefficient matrix has a pivot position in each row.

The system in Example 6 can be consistent or inconsistent, depending
on the numbers b1; b2; b3. The row reduction yields⎡

⎣ 4 3 b1

2 1 b2

7 4 b3

⎤
⎦ ∼

⎡
⎣ 1 0 4b2 − b3

0 1 b1 − 2b2

0 0 b1 + 5b2 − 2b3

⎤
⎦

This system is consistent only when b1 + 5b2−2b3 = 0.When that condition
is met, there will not be a pivot position in the last column of the augmented
matrix.

THEOREM 6

A system of linear equations is consistent if and only if the reduced row
echelon form of its augmented matrix does not have a pivot position in the
last column.

PROOF This is really just a restatement of Theorem 5.

Application: Linear Ordinary Differential Equations

A system of linear ordinary differential equations can be expressed using
matrices and vectors. For example, consider the two equations

dx=dt = y dy=dt = −x

with initial values x(0) = 0 and y(0) = 1. Letting

z =

[
x
y

]

we obtain
dz=dt = Az

where

A =

[
0 1
−1 0

]
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with initial conditions

z(0) =

[
0
1

]

The solution is x(t) = sin (t) and y(t) = cos (t). When we plot the solu-
tions we obtain two overlapping sine and cosine curves. We can generalize
this concept to handle n linear ordinary differential equations by using a
vector of size n and a matrix of size n× n.

x
1 x

2
x

3

x
4

w
1

w
2

w
3

w
4

FIGURE 1.5 Bending beam.

Application: Bending of a Beam

Studying the elasticity of building materials can bring in problems of linear
algebra via Hooke’s law, which has a linear nature. Consider a flexible steel
beam supported by posts at each end. If a downward force is applied to
the beam somewhere between the supports there will be a deflection in the
beam. If there are other such forces (called stresses), then we would like to
compute the expected deflections due to all the stresses. The deflections are
called strains.

For example, we consider four forces (stresses) w1; w2; w3; w4 applied
to the beam at four different locations. The beam then suffers deflec-
tions (strains) x1; x2; x3; x4 as shown in Figure 1.5. Define the vector w =
(w1; w2; w3; w4) and the vector x = (x1; x2; x3; x4). In 1676, Robert Hooke
noted that in an elastic material strain is proportional to stress.4 By Hooke’s
Law, there is a linear relationship between the forces and the deflections,
given by the equation

x = Fw

4 Robert Hooke (1635−1703) was at his best when his mind was jumping from
one thing to another and not doing just one thing at a time. Throughout his life,
Hooke had bitter disputes with fellow scientists, such as claiming that Newton stole
some of his own ideas about the theory of light. Consequently, Newton removed
all references to Hooke from The Principia.
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where the matrix F is the flexibility matrix. The entries in the matrix F
have to be determined by careful experiments.

In this example, F is a 4×4 matrix. The equation x = Fw can be written
in full detail as follows:

x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w1

w2

w3

w4

⎤
⎥⎥⎦

= w1

⎡
⎢⎢⎣

f11

f21

f31

f41

⎤
⎥⎥⎦ + w2

⎡
⎢⎢⎣

f12

f22

f32

f42

⎤
⎥⎥⎦ + w3

⎡
⎢⎢⎣

f13

f23

f33

f43

⎤
⎥⎥⎦ + w4

⎡
⎢⎢⎣

f14

f24

f34

f44

⎤
⎥⎥⎦

= w1f1 + w2f2 + w3f3 + w4f4

The first column f1 in the matrix F is obtained by measuring the strains
that arise from applying a unit stress on the beam at the first point in
the diagram. In the same way, the three other columns of F are found
by placing a unit weight at the three other locations on the beam and
measuring the strains. Another way to explain this is to imagine vector w
to be e1 = (1; 0; 0; 0). Physically it means that a unit weight has been placed
at the first point on the elastic beam. The deflections are measured at all
four points of the beam and entered as column 1 in the matrix F. The first
column of F gives the deflections due solely to a unit force applied at the
first point. Similar interpretations are valid for the other columns of F. For
example, if the flexibility matrix is

F =

⎡
⎢⎢⎣

0:2 0:1 0:3 0:4
0:7 0:5 0:6 0:8
0:9 0:2 0:2 0:5
0:6 0:3 0:4 0:9

⎤
⎥⎥⎦

and the forces are given by w = [25; 45; 35; 55]T in millimeters per Newton,
then the deflection vector would be x = [42; 105; 66; 92]T in millimeters
measured from the original four points on the unbent beam.

Mathematical Software

One can use sophisticated mathematical software to carry out tedious cal-
culations. To illustrate, consider the augmented matrix in Example 8 (p. 53).
Here are the Matlab commands needed to enter the matrix and to invoke
the algorithm for reduced row echelon form:
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Matlab

A = [1,2,3,20;4,5,6,47;7,8,9,74;10,11,12,101]
rref(A)

In Matlab, if you wish to see the successive steps in the row-reduction
process, replace the command rref by rrefmovie. Similarly, the com-
mands in Maple are

Maple

with(LinearAlgebra):
A := Matrix([[1,2,3,20],[4,5,6,47],[7,8,9,74],[10,11,12,101]]);
ReducedRowEchelonForm(A);

Finally, the Mathematica commands are

Mathematica

A = {{1,2,3,20}; {4,5,6,47}; {7,8,9,74}; {10,11,12,101}
RowReduced[A]

The Maple software package supports symbolic calculations and can carry
out the calculations for the general solution.

Maple

with(LinearAlgebra):
A := Matrix([[1,2,3,20],[4,5,6,47],[7,8,9,74],[10,11,12,101]]);
B := ReducedRowEchelonForm(A);
C := BackwardSubstitute(B,free=’x’);
Sol := LinearSolve(A,free=’x’);

One can also use Mathematica to solve systems with symbols in them
such as this one with an arbitrary righthand side:{

x + 2y = a
3x + 7y = b

Maple Mathematica

with(LinearAlgebra): Solve[{x + 2y == a,
solve({x + 2*y = a,3*y + 7*y = b},{x,y}); 3x + 7y == b},{x,y}]

We find x = 7a − 2b and y = −3a + b. Some of the Maple symbolic
manipulations can also be carried out in Matlab, using its Symbolic Math
Toolbox.

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 62 --- #62
�

�

�

�

�

�

62 CHAPTER 1 Systems of Linear Equations

SUMMARY 1.2

• Vectors in R
n: x = (x1; x2; : : : ; xn) =

[x1; x2; : : : ; xn]T ; zero vector: 0 = (0; 0; : : : ; 0)

• Vector addition: x + y = (x1 + y1; x2 + y2;

: : : ; xn + yn); scalar multiplication: cx =
(cx1; cx2; : : : ; cxn)

• Elementary unit vectors: R
2: e1 = (1; 0);

e2 = (0; 1); R
3: e1 = (1; 0; 0); e2 = (0; 1; 0);

e3 = (0; 0; 1)

• Matrix A = [a1; a2; : : : ; an]m×n where aj =
[a1j; a2j; : : : ; anj]T and is the jth column vec-
tor in A

• Matrix–vector product: Ax = x1a1 + x2a2 +
· · · + xnan, a linear combination of columns
in A; (Ax)i = rix, where ri is the ith row of A

• Span{a1; a2; : : : ; an} is the set of all
linear combinations of {a1; a2; : : : ; an};
Col(A) = Span{a1; a2; : : : ; an}

• Equivalent forms of linear systems:

• Matrix form: Ax = b

• Compact summation:
∑n

j=1 aijxj = bi

for 1 ≤ i ≤ m

• In complete detail:⎧⎪⎪⎨
⎪⎪⎩

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

• As a matrix with vectors:⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

• As an augmented matrix:⎡
⎢⎢⎢⎣

a11 a12 · · · a1n | b1

a21 a22 · · · a2n | b2
...

...
. . .

...
...

...
am1 am2 · · · amn | bm

⎤
⎥⎥⎥⎦

• As a linear combination of the columns of
A:

x1

⎡
⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎦ + x2

⎡
⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎦ + · · ·+

xn

⎡
⎢⎢⎣

a1n

a2n
...

amn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎦

• Ax = b is the same as x1a1 + x2a2 + · · · +
xnan = b, which is a linear combination of
the column vectors aj in A

• The mapping x → Ax is linear: A(x + y) =
Ax + Ay and A(cx) = cAx

• The equation Ax = b is consistent if there
exists at least one solution; otherwise it is in-
consistent

• Theorems:

• The system Ax = b is consistent if and only
if b ∈ Col(A).

• Let A be an m × n matrix. The system
Ax = b is consistent for all b ∈ R

n if and
only if Col(A) = R

m.

• Let A be an m × n matrix. The system
Ax = b is consistent for all b ∈ R

n if and
only if there is a pivot position in each row
of A. Equivalently, A has m pivot positions.

• The system Ax = b is inconsistent if and
only if there is a pivot in the last col-
umn of the row-reduced augmented ma-
trix [A | b].
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KEY CONCEPTS 1.2

Vectors, components, transpose of a vector,
linear combinations of vectors, matrix–vector
product Ax, span of a set of vectors, various
formsof linearsystems,row-equivalentmatrices,

freeparametersandvariables,general solutionof
a system of linear equations, consistent and in-
consistent systems of equations, bending beam
application, using mathematical software

GENERAL EXERCISES 1.2

1. Solve these two systems:

⎡
⎣ 3 2

1 4
2 1

⎤
⎦ [

x1

x2

]
=

⎡
⎣ 4

18
1

⎤
⎦ and

⎡
⎣ 3 2

1 4
2 1:1

⎤
⎦[

x1

x2

]
=

⎡
⎣ 4

18
1

⎤
⎦

What conclusion can be drawn?

2. Let A =

⎡
⎢⎢⎣

3 7 −4
5 −2 6
2 1 −1
4 1 2

⎤
⎥⎥⎦ and let b be a vec-

tor in R
4 such that the system Ax = b has a

solution. Explain why it has only one.

3. (Continuation.) Let A be as in General
Exercise 2, and let b = [68;−32; 15; 4]T and
x = [2; 6;−5]T . The superscript T indicates
that these vectors are to be considered as
column vectors. Determine whether x is a
solution of the system Ax = b.

4. Find a vector that solves the first of these
two systems but not the second. Then find
a vector that satisfies the second but not the
first.[

1 0 2 5
0 1 3 7

] [
1 0 3 5
0 1 2 7

]

5. Without doing any calculations, explain
why these two matrices are row equivalent
to each other:

⎡
⎢⎢⎣

7 3 5 −8
0 2 6 11
0 0 5 3
0 0 0 11

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

6. Let

⎧⎨
⎩

x− y + z = 4
2x + y − 3z = 5
−y + 7x− 3z = 22

Find all the solutions of the system.

7. Consider

⎡
⎣ 1 3 0 5 6

2 6 1 8 14
3 9 0 15 18

⎤
⎦

Find the reduced row echelon form of this
matrix.

8. Solve the system whose augmented matrix
is the following, by finding the reduced
row echelon form of the matrix:⎡
⎣ 1 3 1 −8

2 −3 1 27
5 2 3 23

⎤
⎦

9. Find the general solution of this system of
equations:⎧⎨
⎩

4x1 + 12x2 + 2x3 + 16x4 + x5 + 7x6 = 26
−2x1 − 6x2 + 2x3 − 14x4 + 3x5 + 19x6 = 12

x1 + 3x2 + 3x3 − 1x4 + 2x5 + 17x6 = 25

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 64 --- #64
�

�

�

�

�

�

64 CHAPTER 1 Systems of Linear Equations

10. Show that this system is inconsistent:⎧⎨
⎩

x1 + 3x2 + 15x3 = 28
2x1 + 4x2 + 20x3 = 40
x1 + 2x2 + 10x3 = 27

11. Solve the system of equations whose aug-

mented matrix is

⎡
⎢⎢⎣

2 0 2 8 11
7 1 2 8 35
2 0 1 4 9
1 0 2 8 7

⎤
⎥⎥⎦

12. Accept the hypothesis that⎡
⎣ 2 3 4 1

4 11 13 −1
2 3 7 −8

⎤
⎦ ∼

⎡
⎣ 2 3 4 1

0 5 2 6
0 0 1 −3

⎤
⎦

Find the solution of the following system:⎧⎨
⎩

2x1 + 3x2 + 4x3 = 1
4x1 + 11x2 + 13x3 = −1

2x1 + 3x2 + 7x3 = −8

13. What are the inverses of these four row op-
erations: rp ← rp + ˛rq, rq ← rp + ˛rq,
rp ↔ rq, and rq ← ˇrq, where ˛ == 0 and
ˇ == 0. In which cases must we assume q == p

or another hypothesis?

14. Describe the span of the set of columns in

the matrix

⎡
⎣ 3 1 4 2

0 2 3 1
0 0 0 3

⎤
⎦

15. Without any calculations, explain why these
two matrices are not row equivalent to each
other:⎡
⎣ 3:2 1:3 5:5 16:1 22:8 19:2 11:5

1:3 3:7 2:0 19:2 11:7 16:9 12:3
4:7 5:9 9:3 12:4 13:2 15:8 18:7

⎤
⎦

⎡
⎣ 18:5 5:8 7:7 3: 2:9 4: 11:5 8:1

11:7 8:3 2:4 6: 1:4 2: 21:3 9:8
37:2 9:1 5:6 3: 8:2 5: 23:3 1:8

⎤
⎦

16. Sometimes, in applying the row-reduction
process, there are zeros already present in
the matrix, and one is tempted to take ad-
vantage of that fact. However, this may not
be possible,and, if so, those zeros will be sac-
rificed in the reduction process. Here is such

an example:

⎡
⎣ 1 1 3 0
−3 −2 0 −4

5 0 4 3

⎤
⎦. Taking

the given matrix to be the augmented
matrix for a system of equations, find the
reduced row echelon form and the solution
vector.

17. What test can you devise to ascertain that
two equations ax + by = c and rx + sy = t

define the same line? (Assume that the co-
efficients a, b, r, s are all nonzero.)

18. Without performing any row operations,
solve the system whose augmented matrix
is[

3 2 1 0 6
5 −4 0 1 7

]

19. Redo Example 8 (p. 53), using x1 as the free
variable.

20. Let u = (1; 0; 1) and v = (1; 1; 0). Test the
following four vectors to see which ones are
in the span of {u; v}: w = (1;−1; 2), x =
(4; 3; 1), y = (1; 1; 1), and z = (1; 2;−1).
Can you devise a simple test for this task,
keeping the vectors u and v as they are? (The
test should be easy to apply to any vector b
in R

3.)

21. Let

{
ln x25 + y2 = 77
ln x2 + 5y2 = 16

Solve this system for x and y. The loga-
rithms are based on e = 2:71828 : : : :
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SECTION 1.2 Vectors and Matrices 65

22. In this problem, we describe matrices by
listing their columns, which are vectors in
R

m. Explain why if [a1 a2 · · · an] ∼
[b1 b2 · · · bn] and k < n, then [a1 a2 · · · ak]
∼ [b1 b2 · · · bk]. If this turns out to be false,
provide a suitable example.

23. Consider⎧⎨
⎩

0x1 − 4x2 + 9x3 + 29x4 + 14x5 = 9
0x1 − 2x2 + 3x3 + 12x4 + 6x5 = 2

0x1 + 6x2 − 12x3 − 41x4 − 20x5 = −11

Solve the system. Be sure to identify the free
variables (parameters) in the general so-
lution. Express the general solution in the
manner recommended in the text. (See Ex-
ample 8 on p. 53.)

24. Explain why the span of the columns in
an m × n matrix A is identical to the set
{Ax : x ∈ R

n}.

25. Suppose that a system of equations Ax = b
is consistent and that a set of coefficients
ci has the property

∑m
i=1 ciaij = 0 for j =

1; 2; : : : ; n. Explain why
∑m

i=1 cibi = 0. Here
we have supposed that A is an m×n matrix.

26. Determine whether the vector

⎡
⎣ −9

10
8

⎤
⎦ is in

the column space of the matrix⎡
⎣ 1 2 −4

2 0 4
3 1 3

⎤
⎦

27. Give an argument why if one matrix can be
obtained from another via allowable row
operations, then the two matrices have the
same reduced row echelon form.

28. If a system of equations Ax = b is inconsis-
tent, can we always restore consistency by
changing one entry in vector b?

29. Explain why or provide counterexamples:
For a pair of vectors x; y interpreted as n×1
matrices:

a. xT y = yT x b. xyT = yxT

30. Let

⎧⎨
⎩

3x1 + x2 + x3 = a
−3x1 + 9x2 − 5x3 = b

6x1 − 3x2 + 4x3 = c

Find the exact condition on (a; b; c) so that
this system is consistent.

31. Describe the solutions of the system whose

augmented matrix is

[
0 1 2 0 3 4
0 0 0 1 7 5

]
Indicate which variables are independent
(free) and which are dependent.

32. Consider

[
1 2 2 0 6 8
0 2 0 3 9 7

]
Describe the set of all solutions of the sys-
tem having this augmented matrix. Indicate
which variables are independent (free) and
which are dependent.

33. Establish that if the matrix A having en-
tries aij is in row echelon form, then aij = 0
when j < i.

34. Byusingrowoperations,determinewhether
these two matrices are row equivalent to
each other:⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣ 2 9 2

2 6 1
2 −3 −1

⎤
⎦

35. Determine whether these two matrices are

row equivalent to each other:[
2 6 4
1 3 3

] [
2 4 10
1 2 10

]

36. Suppose that the reduced row echelon form
of [A | b] has a pivot in the last column. Ex-
plain why the system of equations Ax = b
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66 CHAPTER 1 Systems of Linear Equations

is inconsistent, that is, has no solution. Is
this true for any row echelon form of the
augmented matrix?

37. In an m × n matrix whose elements are
aij = (−1)i+j, how many positive terms are
there?

38. Find two or more solutions to the system of
equations whose augmented matrix is given
here, and verify your answer:[

2 3 −5 20
3 −4 6 −15

]

39. (Continuation.) Find the solution of the
system in the preceding exercise that mini-
mizes the expression x2

1 + x2
2 + x2

3.

40. Find all solutions of the system whose aug-

mented matrix is

⎡
⎣ 2 3 5 0

6 −4 1 0
10 2 11 0

⎤
⎦

41. Let A and B be m×n matrices. Explain why
A = B if and only if Ax = Bx for all x in R

n.
Half of this (the only if) part is rather obvi-
ous. It is the if part that requires an idea!

42. For linear systems Ax = b and By = c, does
[A | b] ∼ [B | c] imply x = y? Explain why
or why not.

43. Fill in the missing steps in Example 2.

TRUE–FALSE EXERCISES 1.2

1. Consider a system of equations having this

augmented matrix:

⎡
⎣ 1 0 6 3

0 1 3 4
0 0 0 0

⎤
⎦

In this system of equations, the basic vari-
ables are x1 and x2, whereas the variable x3

is a free variable.

2. (Continuation.) The system referred to in
the preceding question has a unique solu-
tion, namely x1 = 3, x2 = 4, and x3 = 0.

3. This equation is correct:⎡
⎣ 1 5

3 1
2 4

⎤
⎦[

2
7

]
=

⎡
⎣ 37

13
34

⎤
⎦

4. If A =

[
3 2
5 −4

]
and x =

[
6
−7

]
, then

Ax =

[
4

58

]

5. The product Ax, where A is an m × n ma-
trix and x is a column vector with n compo-
nents, is defined to be the linear combina-
tion of the columns of A with coefficients
equal to the components in the x vector.

6. The product Ax of a matrix A and a vector
x is defined to be a linear combination of
the rows of A, with coefficients equal to the
components of the vector x.

7. The product Ax is defined if the number
of components in the vector x equals the
number of rows of A.

8. Let A be an m × n matrix in which m > n.
Then there will exist a vector b such that
the system of linear equations Ax = b is
inconsistent.

9. Let A be an m× n matrix for which n > m.
If the equation Ax = b is consistent, then it
has many solutions.
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10. If A is a k× q matrix and x is a vector in R
k,

then Ax is in R
q.

11. The matrix equation Ax = b, where A is
m × n, means that

∑n
p=1 apqxp = bq for

1 ≤ q ≤ m. (Here, apq are elements of the
matrix A and bq are the components of the
vector b.)

12. For any system of linear equations, if there
is a free variable, then there will be infinitely
many solutions.

13. If a system of linear equations Ax = b is
consistent, then the vector b is in the span
of the set of columns of A.

14. If the system of equations Ax = b is consis-
tent, then b is in the span of the set of rows
of A.

15. A system of linear equations is consistent if
and only if the reduced row echelon form of
the augmented matrix has a pivot element
in each column.

16. Every system of linear equations having no
free variables is consistent.

17. Whenever a system of equations Ax = 0 has
two free variables, the system has infinitely
many solutions.

18. The span of the set of rows in an m×n ma-
trix A is the same as the set {Ax : x ∈ R

n}.

19. The system of equations Ax = b is consis-
tent if x is in the span of the set of columns
of A.

20. If the columns of a matrix A span R
k, then

for every vector b in R
k the system of equa-

tions Ax = b is consistent.

21. If the vector b is not in the span of the set of
columns of the matrix A, then the system
of equations Ax = b is inconsistent.

22. If the vector b is in the span of the set of rows
of a matrix A, then the equation Ax = b is
consistent.

23. If each column of an m× n matrix A has a
pivot position, then the columns of A span
R

m.

24. Let A be an m × n matrix. If the equation
Ax = b has a solution for every b in R

m,
then A has a pivot position in each row.

25. If a system of linear equations has free vari-
ables, then the system will be inconsistent.

26. These three vectors span R
3:⎡

⎣ 0
0
5

⎤
⎦

⎡
⎣ 0

5
−8

⎤
⎦

⎡
⎣ 3

2
9

⎤
⎦

27. If a set of vectors {v1; v2; : : : ; vn} spans
R

m, then every vector in R
m has a unique

representation as a linear combination of
v1; v2 : : : ; vn.

28. If A is an m × n matrix, then for each b in
R

m, the equation Ax = b has a solution.

29. Let A be an m × n matrix. If the equation
Ax = b is consistent for every b in R

m, then
A has a pivot position in each column.

30. A matrix can be row equivalent to two
different matrices that are in row echelon
form.

31. A system of linear equations is inconsistent
if and only if the reduced row echelon form
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68 CHAPTER 1 Systems of Linear Equations

of the augmented matrix contains a row of
the type [a1 a2 : : : an | 0], in which at least
one of the terms ai is not zero.

32. Consider two systems of linear equations,
Ax = b and Cy = d. If A is row equivalent
to C, then the two systems have the same
solutions.

33. If all the entries in A and b are integers, and
if the system of equations Ax = b is con-
sistent, then the solution vectors will have
only integer components.

34. If a system of linear equations is incon-
sistent, then it will have infinitely many
solutions.

35. If a system of linear equations is consistent,
then it will have infinitely many solutions.

36. A system of linear equations is consistent if
it has no solution.

37. If A ∼ C and A ∼ D, then C ∼ D.
(Use∼ for row equivalence of matrices.)

38. Two different matrices can be row equiva-
lent to a third matrix that is in reduced row
echelon form.

39. A matrix can be row equivalent to two dif-
ferent matrices that are in reduced row ech-
elon form.

40. Let [A |b] be the augmented matrix of a sys-
tem of linear equations. If every row of
this augmented matrix has a pivot position,
then the system is consistent.

41. Let [A |b] be the augmented matrix of a sys-
tem of linear equations. If, after the row re-
duction to reduced row echelon form, every
column of the resulting augmented matrix
has a pivot, then the system is consistent.

42. A pivot position in a matrix is a location
in the matrix where a leading 1 will appear
when the matrix is put into reduced row
echelon form.

43. In the matrix shown, the zero element is in

a pivot position:

⎡
⎢⎢⎣

0 3 6 4
1 3 7 4
2 3 5 3
1 4 5 9

⎤
⎥⎥⎦

44. There exist examples of matrices A, B, and
C, such that A is row equivalent to C and
B is row equivalent to C, but A is not row
equivalent to B.

45. If the matrix

[
1 h 4
3 6 8

]
is the augmented

matrix of a consistent system of equations,
then h = 2.

46. If A is a p × q matrix and if q > p, then
every equation of the form Ax = b (where
b ∈ R

p) will have infinitely many solutions.

47. If the matrix A has more rows than
columns, then for some vectors b the sys-
tem Ax = b will be inconsistent. (Assume
that A is m× n and the b vectors will be in
R

m.)

48. The equation Ax = b has a solution if and
only if the corresponding system of equa-
tions has at least one free variable.

49. Let the rows of the matrix A be denoted by

A1; A2, : : : ; An. Let x =
[

x1 x2 · · · xn

]T

Then Ax is x1A1 + x2A2 + · · · + xnAn.

50. Let [A | b] be the augmented matrix of a
system of linear equations. If every row of
A has a pivot position, then the system is
consistent.
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51. Let A be an m × n matrix, and let p be the
number of pivot positions in A. Only one
of these conclusions is justified by the hy-
potheses: a. p = n, b. p≥ n, c. p≥m,
d. 2p ≤ n + m

52. If A is row equivalent to B, then for any
vector b, the equations Ax = b and Bx = b
have the same solutions.

53. The solution of a system of equations has
been described by x1 = 3 + 2x3, x2 = 5 + x3,
x4 = 2 − 4x3, where x3 is a free variable.
An alternative description is⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
5
0
2

⎤
⎥⎥⎦ + t

⎡
⎢⎢⎣

2
1
1
−4

⎤
⎥⎥⎦

54. The vector

⎡
⎣ −5

1
4

⎤
⎦ is a linear combination

of the columns of the matrix

⎡
⎣ 1 0 −3

3 2 2
2 0 1

⎤
⎦

55. The set of all vectors having the form
(a − 2b; b − a; 3b − 5a) is the span of the
set {(1;−1;−5); (−2; 1; 3)}.

56. If an m×n matrix A has fewer than n pivots
(or pivot positions), then for any vector b in
R

m, there will be infinitely many solutions
to the equation Ax = b.

57. If an m× n matrix A has n pivots (or pivot
positions), then for any vector b in R

m, there
will be finitely many solutions to the equa-
tion Ax = b.

58. The vector (3; 1; 11) is in the span of the set
of vectors (3; 2; 5), (1; 1; 1), (0; 0; 1).

59. If the system of equations Ax = b is consis-
tent, then b is not in the span of the set of
rows of A.

60. The matrix equation Ax = b, where A is
m × n, means that

∑n
j=1 ajixj = bi for

1 ≤ i ≤ m. (Here, apq are elements of the
matrix A and bk are the components of the
vector b.

61. This matrix product is correctly carried out:⎡
⎣ 2 4

1 3
1 5

⎤
⎦ [

1
6

]
=

⎡
⎣ 26

19
31

⎤
⎦

62. The vector (12; 1;−21) is in the span of
this set of three vectors: {(11; 3; 7), (0; 12; 5),
(0; 0; 66)}.

63. This equation is correct:⎡
⎣ 1

3
7

⎤
⎦ +

[
2
1

]
=

⎡
⎣ 3

4
7

⎤
⎦

64. If h == 0, this augmented matrix cor-
responds to an inconsistent system of

equations

⎡
⎣ 1 3 3 7

0 4 −5 14
2 2 11 h

⎤
⎦

65. A linear system of equations is inconsistent
if and only if the reduced row echelon form
of its augmented matrix has a row of the
form [0 0 · · · 0 | 1].

66. When h = 6, this system is consistent:{
x1 + 2x2 = 3

3x1 + hx2 = 5
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67. The system of equations having this aug-
mented matrix is consistent:⎡
⎣ 1 7 3 6

0 2 4 3
0 0 −9 0

⎤
⎦

68. Whenever a system of linear equations has
free variables, the solution set contains
many solutions.

69. The general solution of x1 + 3x2 − 7x3 = 0
can be written⎡
⎣ x1

x2

x3

⎤
⎦ = x2

⎡
⎣ −3

1
0

⎤
⎦ + x3

⎡
⎣ 7

0
1

⎤
⎦

70. The span of the set of columns in an n×m

matrix A is the same as the set {Ax : x ∈
R

n}.

71. The matrix equation Ax = b, where A is
m × n, means that

∑n
p=1 aqpxp = bq for

1 ≤ q ≤ m. (Here, aqp are elements of the
matrix A and bq are the components of the
vector b.)

72. Let A be an m× n matrix, where n > m. If
Ax = b for some x and b, then for some y
different from x, we have Ay = b.

73. If A is an m× n matrix and m < n, then the
equation Ax = 0 will have infinitely many
solutions.

74. If the columns of a matrix A span R
k, then

for every vector b in R
k the system of equa-

tions Ax = b is consistent.

75. Whenever a system of equations Ax = 0 has
a free variable, the system is consistent.

76. Whenever a system of equations Ax = 0 has
no free variables, the system has a unique
solution.

77. Consider two systems of linear equations,
Ay = b and Bx = b, where b is the same
in both equations. If A is row equivalent
to B, then the two systems have different
solutions when A == B.

78. If the system of equations Ax = b is consis-
tent, then b is in the span of the set of rows
of A.

79. This matrix product is correctly carried out:⎡
⎣ 1 5

3 1
2 4

⎤
⎦ [

2
7

]
=

⎡
⎣ 37

13
32

⎤
⎦

80. The vector (31; 43;−51) is in the span of
this set of three vectors: (11; 3; 7), (0; 12; 5),
(0; 0; 66).

81. If C ∼ A, C ∼ D, and E ∼ D, then E ∼ A.
(Use∼ for row equivalence of matrices.)

82. The system of equations Ax = b is consis-
tent if x is in the span of the set of rows
of A.

83. If the set of columns in a matrix A spans
R

k, then for every vector b in R
k the system

of equations Ax = b is inconsistent.
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MULTIPLE-CHOICE EXERCISES 1.2

Always select the first correct answer.

1. When A =

⎡
⎣ 4 3 4

2 −1 0
1 6 2

⎤
⎦ and x =

⎡
⎣ 3

1
2

⎤
⎦

the third component of Ax is
a. 22 b. 16 c. 13 d. 8
e. None of these.

2. For what value of ˛ is the vector (2; 11;−3)
in the span of the set {(2; 5;−3); (4; 8; ˛)}?
a. 4 b. 1 c. −6 d. 2
e. None of these.

3. What is the span of the set {u; v}, where
u = (1; 1) and v = (2; 1)? (These are vec-
tors in R

2.)
a. A line through the points u and v.
b. The set of all scalar multiples of u.
c. The set of all vectors of the form u + tv,

where t is a real parameter.
d. R

2

e. None of these.

4. Let u = (3; 7; 0), v = (−2; 3; 0), and w =
(5; 5; 5). Which statement is true?
a. u ∈ Span{v; w} b. w ∈ Span{u; v}
c. v ∈ Span{u; w} d. None of these.

5. Let u = (3; 2; 1), v = (1; 2; 3), w = (1; 1; 1).
Which statement is false?
a. u ∈ Span{v; w} b. v ∈ Span{u; w}
c. w ∈ Span{u; v} d. Span{u; v; w}=R

3

e. None of these.

6. Let u = (1; 2; 3), v = (0;−1; 2), and w =
(2; 7; 0). Which assertion is true?
a. u ∈ Span{v; w} and w =∈ Span{u; v}
b. u ∈ Span{v; w} and w ∈ Span{u; v}
c. v ∈ Span{u; w} and u =∈ Span{v; w}
d. w ∈ Span{u; v} and v =∈ Span{u; w}
e. None of these.

7. Which of these assertions is not logically
equivalent to all the others? (The matrix A
is m× n.)
a. The row vectors in A span R

n.
b. The column vectors in A span R

m.
c. For each b ∈ R

m, the equation Ax = b
has a solution.

d. A has a pivot position in each row.
e. None of these.

8. Let A be an m× n matrix. In order to have
a set of three or four logically equivalent
statements, which one of these conditions
must be deleted?
a. The columns of A span R

m.
b. The rows of A span R

n.
c. For every b in R

m, the equation Ax = b
is consistent.

d. Every row of A has a pivot position.
e. None of these.

9. Consider the system of equations whose

augmented matrix is

[
14 8 a

21 12 b

]
Which assertion is correct?
a. It has a solution for all choices of a

and b.
b. It is inconsistent for all choices of a

and b.
c. It has a solution for some choices of a

and b.
d. It has a solution only in the case a = 0.
e. None of these.

10. For what value of c is the vector (c; 20;−7)
in the linear span of (3; 7; 1) and (4;−2; 3)?
a. 0 b. 5 c. −6 d. 7
e. None of these.
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11. Let u = (3; 0; 2), v = (1; 1; 1), and w =
(3;−3; 1).Which vector is in Span{u; v; w}?
a. (1; 2; 3) b. (4; 1; 2) c. (5;−1; 3)
d. (11; 2; 9) e. None of these.

12. Let u = (3; 0; 2), v = (0; 1; 1), and w =
(−3; 1; 0).Which vector is in Span{u; v; w}?
a. (1; 2; 3) b. (4; 1; 2) c. (5;−1; 5)
d. (11; 2; 9) e. None of these.

13. For what value of � is the vector (�; 3;−5)
in the linear span of (1; 3;−1) and
(−5;−8; 2)?
a. 3 b. −6 c. 0 d. −5
e. None of these.

14. For what value of h is the vector (3;−5; h)
in the linear span of (1; 3;−1) and
(−5;−8; 2)?
a. 3 b. −6 c. 0 d. −5
e. None of these.

15. Let [A | b] =

⎡
⎢⎢⎣

2 0 2 8 11
7 1 2 8 35
2 0 1 4 9
1 0 2 8 7

⎤
⎥⎥⎦

Which system is not equivalent to this
system?

a.

⎡
⎢⎢⎣

1 0 0 0 4
0 1 0 0 5
0 0 1 4 1
0 0 0 0 1

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎣

1 0 0 0 4
0 1 0 0 5
0 0 1 4 1
0 0 2 8 3

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

1 0 0 0 4
3 1 0 0 17
2 0 1 4 9
1 0 2 8 7

⎤
⎥⎥⎦ d.

⎡
⎢⎢⎣

1 0 0 0 4
7 1 2 8 35
2 0 1 4 9
1 0 2 8 7

⎤
⎥⎥⎦

e. None of these.

16. When A =

⎡
⎣ 1 2 3

4 5 6
7 8 9

⎤
⎦ and x =

⎡
⎣ 1
−1

1

⎤
⎦

then Ax is: a.

⎡
⎣ 4

5
6

⎤
⎦ b.

⎡
⎣ 6

5
4

⎤
⎦

c.

⎡
⎣ 2

5
8

⎤
⎦ d.

⎡
⎣ 2

5
9

⎤
⎦

e. None of these.

17. Let A =

⎡
⎣ 1 2 1

2 1 −1
4 5 1

⎤
⎦

Which of these matrices is row equivalent
to A?

a.

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ b.

⎡
⎣ 1 0 −1

0 1 1
0 0 0

⎤
⎦

c.

⎡
⎣ 1 2 2

0 1 1
0 0 0

⎤
⎦ d.

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

e. None of these.

18. Let A =

⎡
⎣ 4 3 1

2 1 −1
1 2 1

⎤
⎦

Which of the following four matrices is not
row equivalent to A?

a.

⎡
⎣ 1 2 1

0 1 2
0 0 −2

⎤
⎦ b.

⎡
⎣ 1 2 1

0 1 1
0 5 3

⎤
⎦

c.

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦ d.

⎡
⎣ 1 2 1

2 1 −1
3 4 0

⎤
⎦

e. None of these.

19. Which of these is not a permissible action on
the rows of an augmented matrix, because
it might change the solution set of a system
of equations? (Caution: This is tricky!) (In
each case assume i == j.)
a. ri ↔ rj

b. ri ← 2:3ri

c. ri ← 7ri + rj

d. rj ← 3:7ri + rj

e. None of these.
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20. Which system of equations has many solu-
tions? In each case we show the augmented
matrix of the system of equations.

a.

⎡
⎣ 2 5 9 3

0 3 7 5
0 0 4 1

⎤
⎦ b.

[
2 5 9 3
4 3 7 5

]

c.

[
2 5 3 1
6 15 9 5

]
d.

[
0 2 5 3 1
0 6 15 9 5

]
e. None of these.

21. Let u = (1; 0; 1) and v = (1; 1; 0). Which of
the following vectors is not in Span{u; v}?
a. (1;−1; 2) b. (4; 3; 1) c. (1; 1; 1)
d. (1; 2;−1) e. None of these.

22. Let A be an m × n matrix. The set
{Ax : x ∈ R

n} is the same as
a. The set of row vectors in A.
b. The set of column vectors in A.
c. The span of the set of rows in A.
d. The span of the set of columns in A.
e. None of these.

23. Consider

⎡
⎣ 1 −2 0 0 7 −3

0 1 0 0 −3 1
0 0 0 1 5 −4

⎤
⎦

What is the general solution of the system
with this augmented matrix?
a. x1 = −1; x2 = 1; x3 = 0; x4 = −4; x5 = 0
b. x1 = −1−x5; x2 = 1 + 3x5; x3 = free; x4 =
−4− 5x5; x5 = free

c. x1 = −3− 7x5 + 2x2; x2 = free; x3 = free;

x4 = −4− 5x5; x5 = free
d. x1 + x5 = − 1; x2 − 3x5 = 1; x4 + 5x5 =
−4; x3 = free

e. None of these.

24. What is Ax when A =

⎡
⎣ 1 2 3

4 5 6
7 8 9

⎤
⎦ and

x =

⎡
⎣ 1
−1

1

⎤
⎦?

a.

⎡
⎣ 4

5
6

⎤
⎦ b.

⎡
⎣ 6

5
4

⎤
⎦

c.

⎡
⎣ 2

5
8

⎤
⎦ d.

⎡
⎣ 2

5
9

⎤
⎦

e. None of these.

25. Let u = (1; 2; 3), v = (0;−1; 2), and w =
(2; 7; 0). Which assertion is false?
a. u ∈ Span{v} and w =∈ Span{u; v}
b. w ∈ Span{u; v} c. w =∈ Span{u; v}
d. v =∈ Span{u; w} e. None of these.

26. Consider

⎡
⎣ 0 4 3 4 6 11 5

0 0 0 7 2 8 7
0 0 0 0 0 3 2

⎤
⎦

Suppose a system of linear equations has
the augmented matrix shown. What are all
the free variables?
a. x2, x4, x6 b. x3, x5 c. x1, x3, x5

d. x1, x3, x5, x7 e. None of these.

27. Let A =

⎡
⎣ 5 4 3 2 1 0

0 0 3 4 5 6
0 0 0 0 6 2

⎤
⎦

What are all the pivot positions in this
matrix?
a. a11; a22; a33

b. a11; a23; a35

c. a11; a23

d. a11; a23; a35

e. None of these.

28. Which matrix is in row echelon form?

A =

⎡
⎣ 7 3 2 3

0 0 1 2
0 5 2 4

⎤
⎦ B =

⎡
⎢⎢⎣

7 3 2 3
0 5 4 6
0 0 0 4
0 0 0 0

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣

0 5 1
0 0 2
0 0 2
0 0 0

⎤
⎥⎥⎦ D =

⎡
⎢⎢⎣

3 5 7 0 0
0 0 3 2 1
0 0 1 0 2
0 0 0 0 6

⎤
⎥⎥⎦
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a. D b. A and C c. B d. C
e. None of these.

29. Which matrix is in reduced row echelon
form?

A =

⎡
⎢⎢⎣

3 5 7 0
0 3 2 1
0 1 0 2
0 0 0 6

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0 5 1
0 0 2
0 0 2
0 0 0

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣

7 3 2 3
0 5 4 6
0 0 0 4
0 0 0 0

⎤
⎥⎥⎦ D =

⎡
⎣ 7 3 2 3

0 0 1 2
0 5 2 4

⎤
⎦

a. D b. A c. D and B
d. C e. None of these.

30. Which matrix is the augmented matrix of
an inconsistent system?

A =

⎡
⎣ 7 3 2 3

0 0 1 2
0 5 2 4

⎤
⎦ B =

⎡
⎢⎢⎣

0 5 1
0 0 2
0 0 2
0 0 0

⎤
⎥⎥⎦

C =

⎡
⎢⎢⎣

7 3 2 3
0 5 4 6
0 0 0 4
0 0 0 0

⎤
⎥⎥⎦ D =

⎡
⎢⎢⎣

3 5 7 0
0 3 2 1
0 1 0 2
0 0 0 6

⎤
⎥⎥⎦

a. B b. C c. A and C
d. B and D e. None of these.

31. Which statement is incorrect?
a. Vector (3; 4; 7) is in the span of (2; 1; 0)

and (1; 3; 5).
b. Vector (3; 1; 2) is in the span of (1; 4; 2),

(3;−1; 2) and (5; 7; 5).
c. Vector (5; 5; 5) is in the span of (2; 1; 0)

and (1; 3; 5).
d. Vector (1;−7;−15) is in the span of

(1; 3; 5) and (2; 1; 0).
e. None of these.

32. Which expression is not defined?

a.

[
2 1 5
1 0 3

]⎡
⎣ 3

2
4

⎤
⎦ b.

[
2 1 5
1 0 3

] [
1
5

]

c.

⎡
⎣ 3

2
4

⎤
⎦ [

2 1 5
1 0 3

]
d.

[
1
5

] [
2 1 5
1 0 3

]

e. None of these.

33. Describe all solutions of this linear system:{
3x1 + 6x2 + x3 + 3x4 = −9
2x1 + 4x2 + x3 + 3x4 = 7

a.

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−16

0
39

0

⎤
⎥⎥⎦ + s

⎡
⎢⎢⎣
−2

1
0
0

⎤
⎥⎥⎦ + t

⎡
⎢⎢⎣

0
0
−3

1

⎤
⎥⎥⎦

b.

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦= x4

⎡
⎢⎢⎣
−16

0
39

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

2
0
3
0

⎤
⎥⎥⎦+ x2

⎡
⎢⎢⎣
−2

0
1
0

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
−16

0
39

0

⎤
⎥⎥⎦+ a

⎡
⎢⎢⎣
−2

1
0
0

⎤
⎥⎥⎦+ b

⎡
⎢⎢⎣

0
0
−3

1

⎤
⎥⎥⎦= 0

d.

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦= x2

⎡
⎢⎢⎣
−16

0
39

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

2
0
3
0

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣
−2

0
1
0

⎤
⎥⎥⎦

e. None of these.

34. Let A =

⎡
⎣ 3 4 4
−1 0 2

6 2 1

⎤
⎦ and x =

⎡
⎣ 1

2
3

⎤
⎦

The third component of Ax is
a. 22 b. 16 c. 13 d. 8
e. None of these.

35. Let A be an m × n matrix, and let p be the
number of pivot positions in A. Only one
of these conclusions is justified by the hy-
potheses. Which one?

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 75 --- #75
�

�

�

�

�

�

SECTION 1.2 Vectors and Matrices 75

a. p = n b. p ≥ n c. p ≥ m

d. 2p ≤ n + m e. None of these.

36. The system x + y + z = 6, x + 2y + 3z = 14,
y + 2z = 8
a. Has an infinite number of solutions.
b. Is inconsistent.
c. Has the unique solution (−2; 8; 0).
d. Has a finite number of solutions.
e. None of these.

37. If A =

⎡
⎢⎢⎣

1 0 2 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ and b =

⎡
⎢⎢⎣

1
1
1
0

⎤
⎥⎥⎦

the system Ax = b has
a. No solution.
b. Only the solution [−1; 1; 1; 1]T .
c. Only the solution [−2; 2; 7; 3]T .
d. Two solutions.
e. The parametric solution [−1; 0; 1; 1]T +

c[0; 1; 0; 0]T with c free.
f. None of these.

38. If the augmented matrix of a system con-
tains the row [0 0 0 0 0 | 1], we can conclude
that the system
a. Has a unique solution.
b. Has many solutions.
c. Has at least 5 free variables.
d. Is inconsistent.
e. None of these.

39. If the augmented matrix of a system of
equations has [0 0 0 0 0 | − 91] as
its first row, what conclusion can be drawn
about the system?
a. It is inconsistent.
b. It has a unique solution.
c. It has many solutions.
d. It has at least 2 free variables.
e. None of these.

40. Consider

⎡
⎣ 1 2 −7
−1 −1 1

2 1 4

⎤
⎦

What is the solution of the system having
this augmented matrix?
a. System has no solution. b. (−5; 6)
c. (−7; 1; 4) d. (5;−6)
e. None of these.

41. Let

⎡
⎣ 2 −3 2 1

0 1 −4 2
0 2 −8 5

⎤
⎦ be an augmented

matrix. This system has how many solu-
tions?
a. None
b. At least two
c. At most one
d. Exactly one
e. None of these.

COMPUTER EXERCISES 1.2

1. (Roundoff Error.) Solve the following system
of equations by the Gaussian elimination
method, using Matlab or some other similar
system:{

3:277x1 + 5:113x2 = 2:237
1:482x1 + 2:321x2 = 4:209

Then do the same when all real numbers in
the input data are rounded to three signifi-
cant figures. Draw conclusions.

2. In Matlab, one can ask for calculated quan-
tities to be expressed as quotients of integers
by the command format rat. Using this
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76 CHAPTER 1 Systems of Linear Equations

command, find the solution of this system
expressed as quotients of integers.⎡
⎣ 5 1 −2 2

3 −1 4 1
2 7 6 3

⎤
⎦

3. Use mathematical software to find the gen-
eral solutions to General Exercises 6, 9, 18–19,
23, 31–32, and 38–40 in this section.

4. Find the reduced row echelon forms for the
two matrices in General Exercise 15.

5. Use mathematical software to solve General
Exercise 21 in its original form without using
a change of variable.

1.3 KERNELS, RANK, HOMOGENEOUS EQUATIONS

“Each problem that I solved became a rule which served afterwards
to solve other problems.

–RENÉ DESCARTES (1596–1650)

There are no solved problems. There are only problems that are
more or less ”solved.

JULES HENRÍ POINCARÉ (1854–1912)

At this point in the book, it is assumed that the reader knows all about the
reduced row echelon form of a matrix (in particular how to compute it)
and what pivot elements are.

Kernel or Null Space of a Matrix

A system of linear equations of the form Ax = 0 is said to be homogeneous.
(In the study of differential equations the same concept arises.) This is a
special case of the general system that we usually write as Ax = b. A first
observation about a homogeneous system is that we can take x = 0 as a
solution. This is called the trivial solution. The issue, then, is whether there
are any other solutions. If so, they are called nontrivial solutions. Our goal
is to find, for any specific matrix A, a complete description of the set of all
solutions of its homogeneous equation. That set of vectors is

Ker(A) = { x : Ax = 0} = Null (A)

The abbreviation Ker is for the word kernel. The notation Null(A) is also
used, where Null is an abbreviation for null space. Thus, the kernel or null
space of a matrix is the set of all vectors that are mapped into 0 by the
mapping x 
→ Ax. If A is an m×n matrix, the kernel of A is a subset of R

n.
In symbols, Ker(A) ⊆ R

n or Null(A) ⊆ R
n. This set is never empty, is it?
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EXAMPLE 1 Let A =

[
1 3 5
2 1 4

]
. Is the vector v = [7; 6;−5]T in the

kernel of this matrix?

SOLUTION Yes, one has only to verify that Av = 0:

[
1 3 5
2 1 4

] ⎡
⎣ 7

6
−5

⎤
⎦= 7

[
1
2

]
+ 6

[
3
1

]
− 5

[
5
4

]

=

[
7

14

]
+

[
18

6

]
+

[ −25
−20

]
=

[
0
0

]

If A is an m × n matrix and x is a nonzero vector such that Ax = 0, then
we have a nontrivial equation of the form

x1a1 + x2a2 + · · · + xnan = 0

Here the ai terms are the columns of the matrix A. If A is m× n, then each
column is a vector in R

m. The preceding equation exhibits a linear relation
among the columns of A. In this case, it is a nontrivial equation, because
x == 0. (In other words, the vector x has at least one nonzero component.)
When this occurs, we say that the set of columns of A is linearly dependent.
Otherwise, we say that the set of columns of A is linearly independent. This
important terminology is explained in detail on p. 89.

THEOREM 1

If x and y are vectors in Ker(A), and if ® is a scalar, then x + y and ®x are
also in Ker(A).

PROOF Here is the proof for addition: Assume the hypotheses. Then

A(x + y) = Ax + Ay = 0 + 0 = 0

THEOREM 2

If Ax = b and y ∈ Ker(A), then A(x + y) = b.

THEOREM 3

If Ax = Ay, then x− y ∈ Ker(A).

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 78 --- #78
�

�

�

�

�

�

78 CHAPTER 1 Systems of Linear Equations

THEOREM 4

If u is a vector such that Au = b, then every solution of the equation Ax = b
is of the form x = u + z, for some vector z in Ker(A).

The proofs of Theorems 2, 3, and 4 are straightforward.

THEOREM 5

If two matrices are row equivalent to each other, then their kernels are the
same.

PROOF If A and B are two matrices that are row equivalent to each other,
then the solutions of Ax = 0 and the solutions of Bx = 0 are the same. This
is because row operations performed on a system of equations do not alter
the solutions. Hence, the kernels of A and B are the same.

Homogeneous Equations

Theorems 1 to 5 hint at the utility of knowing all solutions to a homoge-
neous equation Ax = 0. A typical example follows.

EXAMPLE 2 We seek a description of the set of all solutions to the
equation Ax = 0, where

A =

⎡
⎣ 1 3 −2 0

3 10 −7 1
−5 −5 3 7

⎤
⎦

SOLUTION The row reduction of the augmented matrix leads to⎡
⎣ 1 3 −2 0 0

3 10 −7 1 0
−5 −5 3 7 0

⎤
⎦ ∼

⎡
⎣ 1 0 0 −2 0

0 1 0 0 0
0 0 1 −1 0

⎤
⎦

Notice that x4 is a free variable. Furthermore, the last column of 0’s in the
augmented matrix could be omitted in such a calculation because it remains
a zero column throughout the row-reduction process. The corresponding
system of equations can be written as⎧⎨

⎩
x1 = 2x4

x2 = 0
x3 = x4
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We write this in the form⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = x4

⎡
⎢⎢⎣

2
0
1
1

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = t

⎡
⎢⎢⎣

2
0
1
1

⎤
⎥⎥⎦

where t is a free parameter. In words: The kernel of A consists precisely
of all scalar multiples of the vector [2; 0; 1; 1]T . This is a line in four-space
(R4) passing through 0.

Uniqueness of the Reduced Row Echelon Form

The logical underpinning of row reduction, as a technique applied to ma-
trices in general, depends on the following theorem.

THEOREM 6

Every matrix has one and only one reduced row echelon form.

PROOF Let A be m × n. The proof uses induction on n. For n = 1, the
theorem is obvious. Suppose, now, that the theorem has been established
for m × (n − 1) matrices. Let A be an m × n matrix. Denote by An−1 the
matrix obtained from A by removing its nth column. Any sequence of row
operations that brings A to reduced row echelon form also puts An−1 in
reduced row echelon form. By the induction hypothesis, An−1 has one and
only one reduced row echelon form. If B and C are reduced row echelon
forms of A, they can differ only in the nth column. Assume B == C. Select i
so that row i in B differs from row i in C. Thus, we have bin == cin. Because
A ∼ B ∼ C, the homogeneous systems Ax = 0, Bx = 0, and Cx = 0 have the
same solutions. Let Bu = 0. Then Cu = 0 and (B−C)u = 0. The first n− 1
columns of B−C are all zeros.Hence,we have [(B−C)u]i = (bin−cin)un = 0.
Since bin == cin, we must have un = 0. Thus, any solution of Bx = 0 or Cx = 0
must have xn = 0. It follows that the nth column of B and C must have
pivots, for otherwise those columns would be associated with free variables,
and we could choose xn to be nonzero. Because the first n− 1 columns of
B and C are identical, the row in which this pivotal 1 appears must be the
same for B and C; namely, it is the row which is the first zero row of the
reduced row echelon form of An−1. Because the remaining entries in the nth
columns of B and C must be zero, we have B = C, which is a contradiction.
This proof follows the one given by Yuster [1984].
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Rank of a Matrix

An important concept in linear algebra is the rank of a matrix. It is directly
related to the number of pivot positions in the matrix, and, thus, not
surprisingly, it rests upon the precedng theorem.

DEFINITION

The rank of a matrix is the number of nonzero rows in its reduced row
echelon form. We use the notation Rank(A) for this number.

This definition depends logically on our acknowledging that a given matrix
has a unique reduced row echelon form. Remember that in mathematics
the word unique does not mean unusual or noteworthy; it means one of a
kind. (In non-scientific and non-mathematical contexts, casual use of the
word unique has degraded it to the point where it has almost no meaning.)

The computation of the rank of a matrix can be done by obtaining its
reduced row echelon form and counting the number of nonzero rows in
the result. In fact, it is not necessary to get the reduced row echelon form
of the given matrix; its rank will be evident from any row echelon form of
the matrix. This is true because a row echelon form of a matrix reveals how
many nonzero rows there will be in the reduced row echelon form.

EXAMPLE 3 What is the rank of this matrix?

A =

⎡
⎣ 1 3 3 −1 2 17

2 6 −2 14 −3 −19
4 12 2 16 1 7

⎤
⎦

SOLUTION In the row-reduction process, we show a row echelon form
and the reduced row echelon form:

A ∼
⎡
⎣ 1 3 3 −1 2 17

0 0 8 −16 7 55
0 0 0 0 −2 −62

⎤
⎦∼

⎡
⎣ 1 3 0 5 0 −1

0 0 1 −2 0 4
0 0 0 0 1 3

⎤
⎦

That the rank is 3 can be concluded from either of these two row echelon
forms. Here the pivot positions are the boxed entries. In particular, one
need not carry out the reduction to the reduced row echelon form.

Recall that the locations of the pivots are called pivot positions for the
given matrix.
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EXAMPLE 4 What are the pivot positions in the matrix of Example 3?

SOLUTION The pivot positions are (1; 1), (2; 3), and (3; 5). Notice that
the definition of pivot positions refers to the reduced row echelon form of
the matrix, but the location of those pivot positions is already clear from
any row echelon form.

In the reduced row echelon form, each pivot must be to the right of
and below the position of the previous pivot. In other words, each new
pivot must account for a nonzero row and a nonzero column because of
the required pattern.

COROLLARY 1

The rank of a matrix is the number of pivots in its reduced row echelon form,
which is the same as the number of pivot positions in the matrix.

EXAMPLE 5 What are the pivot positions in the matrix

⎡
⎣0 2 3 1

1 4 6 3
3 3 7 5

⎤
⎦?

SOLUTION By carrying out a few row operations, we obtain⎡
⎣ 0 2 3 1

1 4 6 3
3 3 7 5

⎤
⎦∼

⎡
⎣ 1 4 6 3

0 2 3 1
3 3 7 5

⎤
⎦ ∼

⎡
⎣ 1 4 6 3

0 2 3 1
0 −9 −11 −4

⎤
⎦

∼
⎡
⎣ 1 4 6 3

0 2 3 1
0 −1 1 0

⎤
⎦ ∼

⎡
⎣ 1 4 6 3

0 1 −1 0
0 2 3 1

⎤
⎦ ∼

⎡
⎣ 1 4 6 3

0 1 −1 0
0 0 5 1

⎤
⎦

∼
⎡
⎣ 1 4 0 7=5

0 1 0 1=5
0 0 1 1=5

⎤
⎦ ∼

⎡
⎣ 1 0 0 3=5

0 1 0 1=5
0 0 1 1=5

⎤
⎦

We see that the pivot positions are (1; 1), (2; 2), and (3; 3), which are shown
as boxed entries. The matrix has rank 3. Note especially that the pivot
positions cannot be predicted solely from the numbers in the original
matrix. For example, the entry 0 in the original matrix turns out to occupy
a pivot position.
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82 CHAPTER 1 Systems of Linear Equations

THEOREM 7

The rank of an m× n matrix cannot be greater than n or m. In symbols, we
have Rank(A) ≤ min(m; n).

PROOF Think about the reduced row echelon form of an m × n matrix.
Each nonzero row must have a pivot element, and these must occur in the
staircase pattern. In counting the pivots, we note that each new pivot must
account for a nonzero row and a nonzero column. The count of all pivots
cannot therefore exceed n or m. Because the rank is the number of pivots,
the rank can be at most n and at most m.

The next theorem elaborates on this theme. It concerns matrices of size
m×n that have rank less than n. The theorem states that if an m×n matrix
has any one of the properties labeled a; b; : : : ; f, then it must have all those
properties.

THEOREM 8

These properties of an m × n matrix A are equivalent to each other.

a. The rank of A is less than n.
b. The reduced row echelon form of A has fewer than n nonzero rows.
c. The matrix A has fewer than n pivot positions.
d. At least one column in A has no pivot position.
e. There is at least one free variable in the system of equations Ax = 0.
f. The system Ax = 0 has some nontrivial solutions.

A useful corollary of Theorem 8 involves only the dimensions of a matrix:

COROLLARY 2

A homogeneous system of linear equations in which there are more variables
than equations must have some nontrivial solutions.

PROOF Let the system have the form Ax = 0, where the matrix A is m× n.
The homogeneous system of equations has m equations and n unknowns.
Therefore, by hypothesis, n > m. It follows from Theorem 7 that

Rank(A) ≤ min(n; m) = m < n

Apply Theorem 8 to conclude that the homogeneous system has nontrivial
solutions.
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General Solution of a System

The next few examples illustrate techniques for finding the general solution
of a system of equations.

EXAMPLE 6 What do the Theorems 7 and 8 and Corollary 2 tell us
about this system? {

x1 + 3x2 + 9x3 = 0
2x1 + 7x2 + 3x3 = 0

SOLUTION In this system, there are more variables than equations. There-
fore, by Corollary 2, the system has nontrivial solutions. Using Theorem 7,
we find that Rank(A) ≤ min{2; 3} = 2. The row-reduction process applied
to the augmented matrix shows that

[
1 3 9 0
2 7 3 0

]
∼

[
1 0 54 0
0 1 −15 0

]

There are two pivots, and the rank of the matrix is 2. There is one column
without a pivot, and this indicates the presence of a free variable. (Here, it is
x3.) With x3 assigned any value, we have x1 = −54x3 and x2 = 15x3. This is
the general solution of the homogeneous system. The recommended form
of the general solution is

⎡
⎣ x1

x2

x3

⎤
⎦ = x3

⎡
⎣ −54

15
1

⎤
⎦ or

⎡
⎣ x1

x2

x3

⎤
⎦ = t

⎡
⎣ −54

15
1

⎤
⎦

where t is a free parameter. Thus, all solutions to the homogeneous equation
are scalar multiples of the vector [−54; 15; 1]T . All these points lie on a line
through the origin in three-space (R3).

EXAMPLE 7 Find all the solutions of this system of linear equations:⎧⎨
⎩

2x1 − 4x2 = 3
4x1 − x2 = 2
x1 − x2 = 1
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84 CHAPTER 1 Systems of Linear Equations

SOLUTION The row-reduction algorithm leads to this conclusion:⎡
⎣ 2 −4 3

4 −1 2
1 −1 1

⎤
⎦ ∼

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

Of course, we are working with the augmented matrix. The final row of the
row-reduced matrix states that 0x1 + 0x2 = 1. This precludes the existence
of a solution.

The system of equations in Example 7 is inconsistent. Notice that there is
a pivot position in the last column of this augmented matrix. A moment’s
thought will convince us that this is always the sign of an inconsistent
system. Indeed, if there is a pivot in the last column, there must be zeros
elsewhere in that row. Hence, the equation corresponding to that row is of
the form 0x1 + 0x2 + · · · + 0xn = 1, which is not possible!

Matrix--Matrix Product

In Section 1.2, the matrix–vector product⎡
⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn

⎤
⎥⎥⎥⎥⎥⎦

was defined. Now we give meaning to the matrix–matrix product AB when-
ever A is an m× n matrix and B is an n× k matrix. Notice the requirement
that the number of columns in A matches the number of rows in B.

DEFINITION

If A is an m×n matrix and B is an n× k matrix, then the matrix–product
AB is defined to be the m× k matrix whose columns are Ab1, Ab2, : : :, Abk.
Here the vectors bi are the columns of matrix B.

One can write the defining equation in this form:

AB = A
[

b1 b2 · · · bk

]
=

[
Ab1 Ab2 · · · Abk

]
where each column of AB can be computed as a linear combination of the
columns of A.

Abi = bi1a1 + bi2a2 + · · · + binan
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SECTION 1.3 Kernels, Rank, Homogeneous Equations 85

Special cases of the definition arise when m = 1 or k = 1. In these cases,
we get formulas for yT B and Ax where yT is a 1× n row vector and x is an
n× 1 column vector. When m = k = 1, we get the dot product yT x, which
is a 1× 1 scalar.

EXAMPLE 8 As an illustration, we carry out the important process of
matrix–matrix multiplication of a 2 × 2 matrix A and a 2 × 3 matrix B
in full detail:

AB =

[
3 2
1 1

] [
1 4 −1
2 2 3

]

=

[
3 2
1 1

] [ [
1
2

]
;

[
4
2

]
;

[ −1
3

] ]

SOLUTION

=

[ [
3 2
1 1

] [
1
2

]
;

[
3 2
1 1

] [
4
2

]
;

[
3 2
1 1

] [ −1
3

] ]

=

[
1

[
3
1

]
+ 2

[
2
1

]
; 4

[
3
1

]
+ 2

[
2
1

]
; −1

[
3
1

]
+ 3

[
2
1

] ]

=

[ [
7
3

]
;

[
16

6

]
;

[
3
2

] ]
=

[
7 16 3
3 6 2

]

Here we have inserted some commas for clarity.

EXAMPLE 9 What is the numerical value of the following product?

AB =

⎡
⎣ 1 3 2 −5

2 2 −3 4
5 1 1 6

⎤
⎦

⎡
⎣ 2 3
−5 0

4 1

⎤
⎦

SOLUTION Such a product is not defined because the matrices A and B
are incompatible! The product AB of two matrices will exist if and only if
the number of columns in A equals the number of rows in B. Here we have
a 3×4 matrix A and a 2×2 matrix B. Remember, if A is m×n, then B must
be n× k, for some value of k. The values of m and k are unrestricted.

In Section 3.1, the topic of matrix–matrix multiplication is explored in
more detail.
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86 CHAPTER 1 Systems of Linear Equations

EXAMPLE 10 How can we efficiently solve two systems, Ax = b and
Ay = c, when the coefficient matrix A is the same in the two systems?

SOLUTION This example shows how to solve several systems of equations
that differ only in their righthand sides. To solve Ax = b and Ay = c, we
can set up two augmented matrices [A | b] and [A | c]. Then we carry out
the row reduction of both augmented matrices. However, because A is the
same in both, it is more efficient to create this augmented matrix [A | b | c]
and carry out the row reduction on it.

EXAMPLE 11 For a concrete case of this technique, solve the systems
Ax = b and Ay = c, when

A =

⎡
⎣ 1 3 7 −11

2 −4 1 1
1 2 −5 2

⎤
⎦ b =

⎡
⎣ 6

9
−5

⎤
⎦ c =

⎡
⎣ 1

9
−9

⎤
⎦

SOLUTION The augmented matrix and its reduced row echelon form are

[
A b c

]
=

⎡
⎣ 1 3 7 −11 6 1

2 −4 1 −1 9 9
1 2 −5 2 −5 −9

⎤
⎦

∼
⎡
⎣ 1 0 0 −1 2 0

0 1 0 −1 −1 −2
0 0 1 −1 1 1

⎤
⎦

We find the general solution for Ax = b to be

x = u + sz =

⎡
⎢⎢⎣

2
−1

1
0

⎤
⎥⎥⎦ + s

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦

and the general solution for Ay = c to be

y = v + tz =

⎡
⎢⎢⎣

0
−2

1
0

⎤
⎥⎥⎦ + t

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦
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SECTION 1.3 Kernels, Rank, Homogeneous Equations 87

Here s and t are free parameters. The work can be verified by these three
equations:

⎡
⎣ 1 3 7 −11

2 −4 1 1
1 2 −5 2

⎤
⎦

⎡
⎢⎢⎣

2
−1

1
0

⎤
⎥⎥⎦ =

⎡
⎣ 6

9
−5

⎤
⎦

⎡
⎣ 1 3 7 −11

2 −4 1 1
1 2 −5 2

⎤
⎦

⎡
⎢⎢⎣

0
−2

1
0

⎤
⎥⎥⎦ =

⎡
⎣ 1

9
−9

⎤
⎦

⎡
⎣ 1 3 7 −11

2 −4 1 1
1 2 −5 2

⎤
⎦

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎣ 0

0
0

⎤
⎦

EXAMPLE 12 Solve the matrix equation AX = B, where

A =

⎡
⎣ 1 3 1

2 1 4
−3 2 5

⎤
⎦ B =

⎡
⎣ 6 13 15 −5

9 15 14 2
1 10 15 1

⎤
⎦

Also, verify the solution in an independent manner.

SOLUTION This again illustrates the important technique of solving sys-
tems of equations with a single coefficient matrix but multiple righthand
sides. In this example, we face a problem of solving four linear systems
Ax(i) = b(i), for i = 1; 2; 3; 4, each with the same coefficient matrix A:

AX = A[x(1); x(2); x(3); x(4)] = [b(1); b(2); b(3); b(4)] = B

Because the matrix A is 3× 3 and the matrix B is 3× 4, the matrix X must
be 3× 4. The augmented matrix for the problem is

[A | B] =

⎡
⎣ 1 3 1 6 13 15 −5

2 1 4 9 15 14 2
−3 2 5 1 10 15 1

⎤
⎦
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88 CHAPTER 1 Systems of Linear Equations

The row-reduction process leads to these matrices:

[A | B] ∼
⎡
⎣ 1 0 0 2 2 1 0

0 1 0 1 3 4 −2
0 0 1 1 2 2 1

⎤
⎦ = [I | X]

where

X =

⎡
⎣ 2 2 1 0

1 3 4 −2
1 2 2 1

⎤
⎦

An independent verification is possible as follows:

AX =

⎡
⎣ 1 3 1

2 1 4
−3 2 5

⎤
⎦

⎡
⎣ 2 2 1 0

1 3 4 −2
1 2 2 1

⎤
⎦ =

⎡
⎣ 6 13 15 −5

9 15 14 2
1 10 15 1

⎤
⎦ = B

In Section 3.2, the techniques used in this problem will be called upon
again, for computing right and left inverses of matrices.

Indexed Sets of Vectors: Linear Dependence and Independence

In describing sets of vectors, we usually think of the vectors as having
indices attached to them. For example, we might write{

u1 = (7; 3); u2 = (6;−4); u3 = (4; 11)
}

Here, the first vector has the index number 1 associated with it, and the
other two vectors have index numbers 2 and 3 associated with them.Trouble
arises, however, if we have repetitions in the definition of a set, such as this:{

(7; 3); (6;−4); (7; 3)
}

Is this a set of two vectors or three vectors? As an ordinary set it has only
two elements because the third one mentioned is the same as the first. The
set is the same as {

(7; 3); (6;−4)
}

The fact that one vector is mentioned twice does not mean that we have
three vectors, because one is equal to another. However, in this example,
the difficulty is avoided, since these three indexed vectors are deemed to be
different (because their indices differ) in the indexed set:{

u1 = (7; 3); u2 = (6;−4); u3 = (7; 3)
}
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As a consequence, the columns of the matrix

[
u1 u2 u3

]
=

[
7 6 7
3 −4 3

]

are regarded as being different, since they have (invisible) indices 1; 2; 3. In
a few moments, we will be saying that the columns of this matrix form a
linearly dependent set, and the validity of this assertion depends on our
thinking of the columns forming an indexed set.

DEFINITION

An indexed set of vectors, {u1; u2; : : : ; un}, is linearly dependent if there
exists a nontrivial equation of the form c1u1 + c2u2 + · · · + cnun = 0. In the
contrary case, the indexed set is linearly independent. Nontrivial in this
context means

∑n

i=1 |ci| > 0.

EXAMPLE 13 Let u1 = (3; 7; 4), u2 = (−4; 2; 2), u3 = (0; 17; 11). Is this
set of three vectors linearly dependent?

SOLUTION We are asking whether there is a nontrivial equation of the
form

c1u1 + c2u2 + c3u3 = c1

⎡
⎣ 3

7
4

⎤
⎦ + c2

⎡
⎣ −4

2
2

⎤
⎦ + c3

⎡
⎣ 0

17
11

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦

This equation is the same as

[
u1 u2 u3

]
c =

⎡
⎣ 3 −4 0

7 2 17
4 2 11

⎤
⎦

⎡
⎣ c1

c2

c3

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦

A row reduction on the coefficient matrix leads to a row echelon form:⎡
⎣ 3 −4 0

7 2 17
4 2 11

⎤
⎦ ∼

⎡
⎣ 3 −4 0

1 10 17
1 6 11

⎤
⎦ ∼

⎡
⎣ 0 −34 −51

1 10 17
0 −4 −6

⎤
⎦

∼
⎡
⎣ 1 10 17

0 34 51
0 4 6

⎤
⎦ ∼

⎡
⎣ 1 10 17

0 2 3
0 2 3

⎤
⎦
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∼
⎡
⎣ 1 6 11

0 2 3
0 0 0

⎤
⎦ ∼

⎡
⎣ 1 0 2

0 2 3
0 0 0

⎤
⎦

Solving the homogeneous system with the resulting matrix, we have c1 =
−2c3 and 2c2 = −3c3. This reveals that there exist nontrivial solutions to
the homogeneous problem. If we set the free variable c3 equal to 2, for
example, we get a nontrivial solution c1 = −4, c2 = −3, and c3 = 2. Thus,
the original set of three vectors is linearly dependent:−4u1 − 3u2 + 2u3 =
−4(3; 7; 4)− 3(−4; 2; 2) + 2(0; 17; 11) = (0; 0; 0) = 0.

EXAMPLE 14 By direct use of the definition of linear dependence, de-
termine whether these (indexed) sets are linearly independent or linearly
dependent. In the case of linear dependence, give the coefficients that
establish that fact.

a.
{

u1 = (1; 3; 6); u2 = (2; 7; 5); u3 = (0; 0; 0)
}

b.
{

z1 = (7; 6; 3); z2 = (5; 2; 1); z3 = (7; 6; 3)
}

c.
{

x1 = (7; 6); x2 = (5; 4); x3 = (14; 12)
}

d.
{

v1 = (1; 3); v2 = (2; 7); v3 = (4; 13)
}

e.
{

w1 = (7; 2; 3); w2 = (−1; 1; 0); w3 = (1; 3;−1)
}

SOLUTION The first set, a, is linearly dependent because it contains the
zero vector and 0u1 + 0u2 + 1u3 = 0. The second set, b, illustrates a repeated
entry in an indexed set. The set is linearly dependent because z1− z3 = 0:
The third set, c, is linearly dependent by inspection because 2x1 +0x2−x3 =
0.The fourth set, d, is also linearly dependent because 2v1+v2−v3 = 0. If you
did not immediately notice this relationship, the reduced row echelon form
could be used to reveal it. However, the linear dependence (without the co-
efficients) can be predicted most efficiently by Corollary 2 (p. 82). It asserts
that an indexed set of n + 1 vectors in R

n is necessarily linearly dependent.
The fifth set, e, is linearly independent because the reduction process yields

[
w2 w3 w1

]
=

⎡
⎣−1 1 7

1 3 2
0 −1 3

⎤
⎦∼

⎡
⎣ 1 −1 −7

0 4 9
0 −1 3

⎤
⎦∼

⎡
⎣ 1 −1 −7

0 1 −3
0 0 1

⎤
⎦

There is a pivot position in each column of the original matrix and the only
solution of the homogeneous system is the trivial one.
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Here is an algorithm for determining whether a set of vectors in R
m is

linearly independent.

ALGORITHM

Given an (indexed) set of vectors v1, v2,… , vn in R
m , form a matrix A using

these n vectors as columns. If the equation Ax = 0 has a nonzero solution,
then the given set of vectors is linearly dependent. If the equation has only
the 0 solution, then the set is linearly independent.

Another example to illustrate the testing for linear independence fol-
lows. It also shows that the property of linear dependence can be sensitive to
small changes in the data.The set of three vectors {(1; 2; 1); (3; 1; 1); (5; 5; 3)}
is linearly dependent because⎡

⎣ 1 3 5
2 1 5
1 1 3

⎤
⎦ ∼

⎡
⎣ 1 3 5

0 −5 −5
0 −2 −2

⎤
⎦ ∼

⎡
⎣ 1 3 5

0 1 1
0 0 0

⎤
⎦

Now we make a small change in one vector. The new set of vectors is
{(1; 2; 1); (3; 1; 1)(5; 5; 3:01)} and it is linearly independent because⎡

⎣ 1 3 5
2 1 5
1 1 3:01

⎤
⎦ ∼

⎡
⎣ 1 3 5

0 −5 −5
0 −2 −1:99

⎤
⎦ ∼

⎡
⎣ 1 3 5

0 1 1
0 0 1

⎤
⎦

THEOREM 9

If an indexed set of two or more vectors is linearly dependent, then some
vector in the set is a linear combination of the others.

PROOF Consider the equation
∑k

i=1 civi = 0. If the equation has a nontriv-
ial solution, then some coefficient is nonzero. For simplicity, assume c1 == 0.
Then v1 = −(1=c1)

∑k

i=2 civi.

THEOREM 10

If an indexed set of two or more vectors in R
m is linearly dependent, then

some vector in the list is a nontrivial linear combination of vectors preceding
it in the list.
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PROOF If {v1; v2; : : : ; vp} is linearly dependent, we have
∑p

i=1 civi = 0 in a
nontrivial equation. Let cq be the last nonzero coefficient. Then

∑q

i=1 civi =

0 and cq == 0. Solving for vq, we have vq = (−1=cq)
∑q−1

i=1 civi.

EXAMPLE 15 Consider the matrix

⎡
⎣ 1 −2 2
−5 10 −9
−3 6 h

⎤
⎦. Can the pa-

rameter h be chosen so that the three columns form a linearly independent
set?

SOLUTION In this matrix, let the columns be v1, v2, and v3. Obviously, we
have 2v1 + v2 = 0, and the set of columns is linearly dependent. No value
of h makes {v1; v2; v3} linearly independent.

THEOREM 11

The rows of a matrix form a linearly dependent set if and only if there is a
zero row in any row echelon form of that matrix.

PROOF Let A be the matrix under consideration, and let its rows be denoted
by r1; r2; : : : ; rm. In the following list of assertions, each implies the one
following:

a. The set {r1; r2; : : : ; rm} is linearly dependent.
b. A nontrivial equation

∑m

i=1 ciri = 0 is true.
c. For some index k, we have ck == 0 and rk +

∑
i==k(ci=ck)ri = 0.

d. Row rk becomes 0 if we add to it suitable multiples of the other rows.
e. Any row echelon form of A has a zero row.

For the converse, assume that A is row equivalent to a matrix B that has a
zero row, say row rk. That zero row arises from adding multiples of rows in
A onto row rk and from moving the rows so that the zero rows are at the
bottom. This process is the same as the one described in the first half of
the proof of this theorem, and we can conclude that the rows of A form a
linearly dependent set.

Using the Row-Reduction Process

By applying the row-reduction process to a matrix, we can easily decide
whether the set of rows is linearly dependent or linearly independent. If a
row echelon form has a zero row, then the rows form a linearly dependent
set, and vice versa. If we want the coefficients that make the equation

© Jones and Bartlett Publishers: NOT FOR SALE OR DISTRIBUTION



�

�

‘‘50204_ch01’’ --- 2008/1/24 --- 19:23 --- page 93 --- #93
�

�

�

�

�

�

SECTION 1.3 Kernels, Rank, Homogeneous Equations 93

∑n

i=1 ciri = 0 true, we can get them from the row-reduction process. Here
is an example of this technique.

EXAMPLE 16 Determine whether the rows of this matrix form a lin-
early dependent set, and if so, find the coefficients in a nontrivial combi-
nation that is 0.

A =

⎡
⎣ r1

r2

r3

⎤
⎦ =

⎡
⎣ 1 3 2 2
−1 1 3 −3
−2 −2 1 −5

⎤
⎦

SOLUTION We immediately consider AT , whose columns are the rows of
A. Its reduced row echelon form is shown here:

AT =

⎡
⎢⎢⎣

1 −1 −2
3 1 −2
2 3 1
2 −3 −5

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 0 −1
0 1 1
0 0 0
0 0 0

⎤
⎥⎥⎦

We have obtained the linear combination c1r1 +c2r2 +c3r3 = 0, where c1 = c3

and c2 = −c3. Consequently, one nontrivial solution is c1 = 1; c2 = −1;
c3 = 1. Check: (1; 3; 2; 2)− (−1; 1; 3;−3) + (−2;−2; 1;−5) = 0.

The proofs of the following two theorems are left as exercises.

THEOREM 12

The column vectors of a matrix form a linearly dependent set if and only if
there is a column having no pivot.

THEOREM 13

The column vectors of a matrix form a linearly independent set if and only
if there is a pivot position in each column of the matrix.

EXAMPLE 17 Use Theorems 11 and 12 to determine whether this set
of vectors is linearly dependent or linearly independent:{

(1; 3; 7); (2; 5;−4); (−5;−11; 37)
}
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94 CHAPTER 1 Systems of Linear Equations

SOLUTION First, form a matrix with the three indicated vectors as its
rows. Then carry out a row-reduction process to see whether the reduced
row echelon form has a zero row. (Any row echelon form of the matrix will
serve to answer this question.) We have

⎡
⎣ 1 3 7

2 5 −4
−5 −11 37

⎤
⎦ ∼

⎡
⎣ 1 3 7

0 −1 −18
0 4 72

⎤
⎦ ∼

⎡
⎣ 1 3 7

0 1 18
0 1 18

⎤
⎦

∼
⎡
⎣ 1 3 7

0 1 18
0 0 0

⎤
⎦

We conclude from Theorem 11 that the given set of three vectors is linearly
dependent.

Next, we carry out the row-reduction process of a matrix with the three
indicated vectors as its columns:

⎡
⎣ 1 2 −5

3 5 −11
7 −4 37

⎤
⎦ ∼

⎡
⎣ 1 2 −5

0 −1 4
0 −18 72

⎤
⎦ ∼

⎡
⎣ 1 2 −5

0 −1 4
0 −1 4

⎤
⎦

∼
⎡
⎣ 1 0 3

0 1 −4
0 0 0

⎤
⎦

Because there is a column without a pivot, these column vectors form a
linearly dependent set, by Theorem 12. In particular, we find −3(1; 3; 7) +
4(2; 5;−4) = (−5;−11; 37). We can find these coefficients for this linear
combination only from the second system—not the first one! Why? Notice
that

−3(1; 3; 7) + 4(2; 5;−4) = (−5;−11; 37)

and

−3

⎡
⎣ 1

3
7

⎤
⎦ + 4

⎡
⎣ 2

5
−4

⎤
⎦ =

⎡
⎣ −5
−11

37

⎤
⎦

In determining whether a set of vectors is linearly dependent, the vectors
can be taken to be either the rows or the columns of a matrix.
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Determining Linear Dependence or Independence

When solving small problems by hand, one can determine whether a set of
n vectors {v1; v2; : : : ; vn} in R

m is linearly independent or linearly dependent
as follows.

1. By inspection, determine whether the set contains 0. If so, one con-
cludes immediately that the set is linearly dependent.

2. Does the set contain two vectors, of which one is a multiple of the
other? If so, the set is linearly dependent.

3. If it is evident that some vector in the set is a linear combination of
other vectors in the set, then the set is linearly dependent.

4. Use Theorems 8, 12, and 13 or Corollary 2. Typically, this will involve
putting the vectors as columns in an m× n matrix. If n > m, then the
set of columns is linearly dependent, by Corollary 2. In this case, no
calculation is needed, only counting!

5. Look at the general case if none of the preceding is true. Put the vectors
v1; v2; : : : ; vn as columns into a matrix A. Carry out the row-reduction
process on A to obtain a row echelon form. Either the system Ax = 0 has
a nonzero solution or it does not. In the first case, the set of columns
is linearly dependent. Otherwise, the set of columns in A is linearly
independent.

In other words, first try to find special cases that immediately solve the
problem before launching into the general case, which may be long and
tedious.

Application: Chemistry

A typical unbalanced equation describing a chemical reaction is

B2S3 + H3N→ B3N2 + S3H4

(This equation may not describe a possible reaction: it is used only to illus-
trate the principles.) The capital letters refer to various chemical elements:
B = Boron, N = Nitrogen, S = Sulfur, and H = Hydrogen. The equation
can be put into words as follows: If the compound B2S3 reacts with the
compound H3N, the result will be two compounds, B3N2 and S3H4. What
is missing in this assertion is information about the relative quantities of
each compound involved in the reaction. To balance the equation, numeri-
cal factors must be associated with each compound, and when that has been
done we will know the relative amounts of each compound participating in
the chemical reaction. Here we are balancing the number of atoms in each
element. Once these numbers have been determined, the relative masses of
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96 CHAPTER 1 Systems of Linear Equations

the elements in the reaction can be computed. Thus, after the balancing
process, the number of atoms of each element should be the same on the
two sides of the equation.

To proceed, we associate a factor with each compound. These factors
are unknown at the beginning of our analysis, and are denoted by x; y; z; w.
Now we write

xB2S3 + yH3N = zB3N2 + wS3H4

Counting the number of atoms for each element, B; S; H; N, leads to four
equations as follows:

B : 2x = 3z S : 3x = 3w H : 3y = 4w N : y = 2z

If all terms are placed on the lefthand side, we obtain four homogeneous
equations with four unknowns. The coefficient matrix and its partially
reduced form are⎡

⎢⎢⎣
2 0 −3 0
3 0 0 −3
0 3 0 −4
0 1 −2 0

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

1 0 0 −1
0 1 −2 0
0 0 3 −2
0 0 0 0

⎤
⎥⎥⎦

A convenient solution for the homogeneous system is x = 3, y = 4, z = 2,
and w = 3. A balanced equation is

3B2S3 + 4H3N = 2B3N2 + 3S3H4

This work reveals the ratios of the compounds in the reaction. For example,
the number of molecules of H3N should be four-thirds the number of
molecules of B2S3, if the chemical reaction is to use all the material provided.
After the reaction has taken place, the number of molecules of S3H4 should
be three-halves the number of molecules of B3N2, and so on.

SUMMARY 1.3

• Homogeneous systems: Ax = 0

• Trivial solution x = 0;
nontrivial solution x == 0

• Kernel or Null Space:
Ker(A) = Null(A) = {x : Ax = 0}

• Ker(A) = Null(A) ⊆ R
n if A is m× n

• The columns of A form a linearly indepen-
dent set if and only if the equation Ax = 0
has only the trivial solution

• The columns of A form a linearly dependent
set if and only if the equation Ax = 0 has a
nontrivial solution
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• A linear combination of columns of A can be
written as x1a1 + x2a2 + · · · + xnan or as Ax.
The vectors ai are the columns of A.

• Theorems on kernel (or null space):

• If x and y are in Null(A), then so are x + y
and ˛x

• If Ax = b and y ∈ Ker(A), then A(x+y) = b

• If Ax = b and Ay = b, then x − y is in
Ker(A)

• If A ∼ B, then Ker(A) = Ker(B)

• A given matrix has one and only one reduced
row echelon form

• The rank of a matrix is the number of rows
that have pivot positions

• If A is an m× n matrix, then
Rank(A) ≤ min{m; n}

• One can solve the equations Ax = b and
Ay = c by using the augmented matrix
[A | b c]

• If A is an m × n matrix, then the number
of nonzero rows in its reduced row echelon
form is at most n

• If A is an m× n matrix, then A has at most n

pivot positions

• If A is m× n and B is n× q, then
AB = [Ab1 Ab2 · · · ; Abq]

KEY CONCEPTS 1.3

Homogeneous systems, trivial solutions and
nontrivial solutions, kernel of a matrix, null
space of a matrix, row-equivalent matrices,
rank, pivot position, unicity of the reduced row
echelon form, pivot positions in a matrix, upper

bounds on the rank of a matrix, some equivalent
properties of matrices, matrix–matrix multipli-
cation, an inconsistent system and its reduced
row echelon form, indexed set, linear indepen-
dence, linear dependence, chemical application

GENERAL EXERCISES 1.3

1. Solve this system of equations by carrying
out the reduction of the augmented matrix
to reduced row echelon form:⎧⎨
⎩

5x1 − 2x2 = 9
3x1 − x2 = 8

11x1 − 3x2 = 33

2. (Continuation.) Compute the rank of the
coefficient matrix.

3. Find the general solution of this system of
equations and express it in the manner rec-
ommended in the text:

⎧⎨
⎩

x1 + 3x2 + 9x3 = 6
2x1 + 7x2 + 3x3 = −5
x1 + 4x2 − 6x3 = −11

4. For the matrix shown here, compute its
rank and find a set of vectors whose span is
its kernel:⎡
⎢⎢⎣

1 4 −5 10
3 1 7 −3
2 2 2 2
1 3 −3 7

⎤
⎥⎥⎦
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98 CHAPTER 1 Systems of Linear Equations

5. Let A =

⎡
⎣ 7 2 0 49 −37

3 1 0 22 16
4 2 2 31 20

⎤
⎦

Find a pair of vectors whose span is Ker(A).

6. Find a matrix whose kernel is spanned
by the two vectors u = (1; 3; 2) and
v = (−2; 0; 4).

7. Let A =

⎡
⎣ 1 3 7

2 −4 1
1 2 5

⎤
⎦

B =

⎡
⎣ 11 6 2 −12 27
−1 9 −20 −5 −19
−2 −5 21 22 9

⎤
⎦

Solve the system of equations AX = B. Then
do the same for the following augmented

matrix:

⎡
⎣ 1 3 7 1 0 0

2 −4 1 0 1 0
1 2 5 0 0 1

⎤
⎦

8. This problem is solved readily with the
technique explained in Example 10 (p. 86).
We ask: What are the vectors u and v if
(−12; 10; 20) = 3u + 5v and (17;−8; 21) =
5u− 4v?

9. Explain why the system Ax = 0 is always
consistent.

10. Without any calculations, provide nontriv-
ial solutions to the equation Ax = 0, when
A is in turn each of the following matrices:

a.

⎡
⎣ 1 1

3 3
7 7

⎤
⎦ b.

⎡
⎣ 1 −2

3 −6
7 −14

⎤
⎦

c.

⎡
⎣ 1 4 6

2 5 9
2 9 13

⎤
⎦

11. (Continuation.) For the three matrices, find
nontrivial vectors in their kernels. No cal-
culations are necessary.

12. Explain why the following two matrices are
not row equivalent to each other by showing
that the corresponding systems of homo-
geneous equations have different solutions
(assume a == b):

A =

[
1 a 0
0 0 1

]
B =

[
1 b 0
0 0 1

]

13. Establish that if the set {v1; v2; v3} is linearly
independent, then so is
{v1 + v2; v2 + v3; v3 + v1}.

14. Find two vectors whose span is the kernel

of the matrix

[
7 3 5 37
2 1 1 11

]

15. Solve these two systems of equations in an

efficient manner:

[
1 3
2 1

] [
x1

x2

]
=

[
14

8

]
[

1 3
2 1

] [
y1

y2

]
=

[ −4
7

]

16. If A =

⎡
⎣ x 1 0
−9 y 7
−1 4 z

⎤
⎦ and the kernel of A

contains the vector

⎡
⎣ 1
−2

3

⎤
⎦, what are x, y,

and z?

17. Determine whether this is true:⎡
⎣1 3 0 5 0 4

2 6 1 8 0 5
2 6 2 6 1 9

⎤
⎦∼

⎡
⎣1 3 0 5 0 4

0 0 1 −2 0 −3
0 0 0 0 1 7

⎤
⎦

18. Determine whether this set of vectors is
linearly dependent:{

(3; 2; 7); (4; 1;−3); (6;−1;−23)
}

19. Explain why a system of equations Ax = b
has either no solution, exactly one solution,
or infinitely many solutions. Explain how
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these three outcomes are easily distin-
guished after the row reduction of the aug-
mented matrix has been carried out.

20. Justify, without appealing to the reduced
row echelon form, the assertion that if a sys-
tem of equations Ax = b has two solutions
then it has infinitely many solutions.

21. (Continuation.) Consider a system of equa-
tions Ax = b, and assume that it has two
solutions, say u and v. Explain why, for all
real values of t, tv + (1− t)u is also a solu-
tion. Establish then that the solution set of
the system contains a line.

22. Establish the validity of Theorems 1–4 (pp.
77–78).

23. Explain why two matrices that are row
equivalent to each other must have the same
rank.

24. Explain why a set of n vectors in R
m is lin-

early independent if and only if the ma-
trix having these vectors as its columns has
rank n.

25. Establish directly that if Ax = 0 for some
nonzero vector x, then the rank of A is less
than n. (Here A is m× n.)

26. Let the matrix A be in reduced row echelon
form. Explain why each nonzero row con-
tains a pivot element. Is the same assertion
true for the columns of A?

27. Explain why the rank of A is the number of
pivot positions in A.

28. Establish that the rank of A is the number
of columns that contain pivot positions.

29. Consider a consistent system of equations
Ax = b, in which A is m × n and m < n.

Explain why the system must have many
solutions.

30. Compute the ranks of these matrices:

a.

⎡
⎢⎢⎣

5 2 0 18
2 1 0 8
3 3 −1 15
1 0 0 2

⎤
⎥⎥⎦ b.

⎡
⎢⎢⎢⎢⎣

4 3 7 5 4
0 2 2 −1 6
0 0 5 2 3
0 0 0 1 5
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦

c.

⎡
⎢⎢⎢⎢⎣

e 3 7 5 4
2 2 −1 6 0
5 2 3 0 0
1 5 0 0 0
3 0 0 0 0

⎤
⎥⎥⎥⎥⎦

31. Let A be an m × n matrix whose kernel is
0; that is, the only solution of the equation
Ax = 0 is x = 0. What is the rank of A?

32. a. The linear system x−y− z = 0; x + y−
z = 0 has infinitely many solutions.
These are the points on the line of inter-
section of the two given planes in R

3.
Find the equation for this line.

b. Find a simple description of the set of
points satisfying these three equations:
y+2z = 0; 2x−y+8z = 0; x−y+3z = 0.

33. Let A =

⎡
⎣ 0 0 0

0 4 0
0 2 3

⎤
⎦

What are the pivot positions in this matrix?

34. If A is an m× n matrix and m ≥ n, what is
the maximum number of pivot positions in
A? Explain. What is the maximum number
of pivotal rows that A can have?

35. Let A be an m × n matrix, where m < n.
What is the maximum number of pivot
positions in A? What is the least number
of nonpivotal columns in A? What is the
least number of free variables in solving the
equation Ax = 0?
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36. (Continuation.) Adopt the hypotheses on
A as in the preceding question. Explain why
the equation Ax = 0 has a nontrivial solu-
tion. Explain why the columns of A form a
linearly dependent set of vectors.

37. Let C =

⎡
⎣ 1 0 0 3

0 1 0 2
0 0 1 7

⎤
⎦

If each of two matrices A and B is row equiv-
alent to C, does it follow that A = B?

38. If two matrices A and B are not row equiv-
alent to each other, can they have the same
reduced row echelon form? Explain.

39. Let u = (1; 3; 2), v = (2;−1; 4), and
w = (−3; 26;−6). Determine whether the
set {u; v; w} is linearly independent.

40. (Challenging.) Consider this infinite se-
quence of matrices:

A1 = [1] A2 =

[
1 2
3 4

]

A3 =

⎡
⎣ 1 2 3

4 5 6
7 8 9

⎤
⎦

A4 =

⎡
⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎤
⎥⎥⎦ and so on

(We have shown only the first four of them.)
Find the ranks of all of them.

41. If the rank of an augmented matrix [A | b]
is greater than the rank of A, what conclu-
sion can be drawn? Is there an implication
in both directions?

42. (Challenging.) What are the ranks of the
matrices in this infinite sequence?

A1 = [1] A2 =

[
1 2
4 3

]
A3 =

⎡
⎣ 1 2 3

6 5 4
7 8 9

⎤
⎦

A4 =

⎡
⎢⎢⎣

1 2 3 4
8 7 6 5
9 10 11 12

16 15 14 13

⎤
⎥⎥⎦ and so on

43. Describe all the 3× 4 matrices of rank 1.

44. Explain why, for any system of linear equa-
tions, the rank of the augmented matrix is
at least as great as the rank of the coefficient
matrix.

45. (Challenging.) Let n ≥ 3, and create an
n×n matrix A by defining Aij = ˛i+ˇj+� ,
where ˛, ˇ, and � are three arbitrary posi-
tive numbers. What is the rank of A?

46. Define a family of functions fn by the equa-
tion fn(x) = 1 when x ≥ n and fn(x) = 0 if
x < n. Is this family linearly independent?
(Here n = 0; 1; 2 and so on.)

47. If {v1; v2} is a linearly independent pair of
vectors, is the same true for {v1; v2 + �v1}
when � is an arbitrary constant?

48. If {v1; v2 + �v1} is linearly independent for
some nonzero scalar �, does it follow that
{v1; v2} is linearly independent?

49. If {v1; v2 + �v1} is linearly dependent for
some nonzero scalar �, does it follow that
{v1; v2} is linearly dependent?

50. Balance this chemical reaction:
AgNO3 + NaCl→ AgCl + NaNO3

51. Balance this chemical reaction:
H2 + NO2 → NH3 + H2O

52. Balance this hypothetical chemical equa-
tion:
NHCO3 + HC→ NC + H2O + CO2
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53. Consider

⎡
⎣ 1 3 4

2 5 1
3 6 h

⎤
⎦

For what value of h does this matrix have a
nontrivial kernel?

54. Find the general solution of this system
and display it in the recommended form:{

x1 + 2x2 + x3 = 0
3x1 + 4x2 − 3x3 = 0

55. Consider the vectors u1 = (1; 3; 2), u2 =
(−2; 1; 4), and u3 = (8; 3;−8). Taken
alone, each of these vectors is linearly in-
dependent (which means in this case that
each vector is nonzero). Hence, the En-
glish language allows us to say that they are
linearly independent. Reconcile this con-
clusion with the easily verified fact that
2u1 − 3u2 − u3 = 0: What is the remedy
for this apparent inconsistency?

56. (Challenging.) Consider three vectors in
R

2: u = (u1; u2), v = (v1; v2), and w =
(w1; w2). Show that the following six con-
ditions are incompatible: u1v1 + u2v2 = 0,
v1w1 + v2w2 = 0, w1u1 + w2v2 = 0,
u2

1 + u2
2 > 0, v2

1 + v2
2 > 0, w2

1 + w2
2 > 0.

57. Consider

⎡
⎣ 1 3 2

0 1 4
1 4 6

⎤
⎦

Find the rank of this matrix. What can be
said of the equation Ax = 0?

58. What conditions must be placed on A in
order that the system Ax = 0 be consistent?

59. Consider the system⎧⎨
⎩

x1 + 3x2 + x3 = 6
2x1 + 6x2 + 3x3 = 16
3x1 + 9x2 + 4x3 = 22

Show the original augmented matrix.
Obtain its reduced row echelon form.

Give the rank of the coefficient matrix.
Describe the solution of the system. Iden-
tify the independent (free) variables. Find
all solutions of Ax = 0 when A is the coef-
ficient matrix.

60. Let v1 = (1; 5;−2; 4), v2 = (−1; 2; 2;−4),
v3 = (2; 12;−1; 12), v4 = (0; 1; 1; 2), and
v5 = (3;−1; 4;−2). Is this set of vectors
linearly independent? Explain fully.

61. Explain that if the equation AX = B has
more than one solution, then the equation
AX = 0 has a nontrivial solution. Establish
that this equation has infinitely many solu-
tions. Here A is an m × n matrix, X is an
n× q matrix, and B is an m× q matrix.

62. If possible, express (7;−1; 0) as a linear
combination of (1; 3; 2) and (4; 1; 1).
Explain how you solve this.

63. Suppose that the equation Ax = b has more
than one solution. Explain why the equa-
tion Ax = 0 has infinitely many solutions.

64. (Challenging.) For each n there is a matrix
An following this pattern:

A1 = [1] A2 =

[
1 3
2 4

]
A3 =

⎡
⎣ 1 4 7

2 5 8
3 6 9

⎤
⎦

A4 =

⎡
⎢⎢⎣

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

⎤
⎥⎥⎦ and so on.

What are the ranks of these matrices?

65. Consider the system⎧⎨
⎩

4x1 + 12x2 + 6x3 = 32
3x1 + 9x2 + 4x3 = 22

4x1 + 12x2 + 4x3 = 24
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Show the accompanying augmented
matrix. Obtain the reduced row echelon
form. Give the rank of the coefficient ma-
trix. Describe the solutions of the system.
Identify the independent (free) variables, if
there are any.

66. (Continuation.) Find all solutions of Ax =
0 when A is the coefficient matrix of the
preceding problem.

67. Give a simple example where a system has
a free variable and yet no solutions.

68. If Rank(A) = k, what is Rank([A | b])?

69. Can our theory of linear equations be
built up with just this one row operation:
ri ← ˛ri + ˇrj for i == j and for nonzero
scalars ˛ and ˇ?

70. Establish that every matrix of rank r is a
sum of r matrices of rank 1.

71. Establish the validity of
a. Theorem 8 (p. 82).
b. Theorem 12 (p. 93).
c. Theorem 13 (p. 93).

72. Consider {p0; p1; p2; p3}. Determine
whether this set of polynomials is lin-
early independent or linearly dependent.
The definitions are p0(t) = 1, p1(t) = t,
p2(t) = 4− t, p3(t) = t3.

73. Let f(t) = sin t and g(t) = cos t. Determine
whether the pair {f; g} is linearly dependent
or linearly independent.

74. Let f(t) = 1, g(t) = cos 2t, and h(t) =
sin2 t. Determine whether the set {f; g; h} is

linearly dependent or independent. The do-
main of the functions is taken to be R.

75. Test each of these three sets of functions
{u1; u2; u3} for linear dependence or linear
independence:
a. u1(t) = 1; u2(t) = sin t; u3(t) = cos t

b. u1(t) = 1; u2(t) = sin2 t; u3(t) = cos2 t

c. u1(t) = cos 2t; u2(t) = sin2 t;

u3(t) = cos2 t

76. Verify that there exists no 2 × 2, nonin-
vertible, nonsymmetric matrix A such that
Ker(A) = Ker(AT ).

77. If the rank of an m × n matrix is less than
m, can we conclude that the rows form a
linearly dependent set? (The term rank is
defined on p. 80.)

78. Establish that if a set of at least two vectors
is linearly dependent, then one element of
the set is a linear combination of the others.

79. Argue that a pair of vectors is linearly de-
pendent if and only if one of the vectors is
a multiple of the other.

80. Explain why a pair of vectors is linearly in-
dependent if the two vectors are not co-
linear with the 0-vector.

81. Explain why the rank of A and the rank of
[A | b] can differ by at most 1. Here b is a
column vector.

82. A set is linearly independent if and only if its
indexed set is linearly independent. Explain
why or find a counterexample.
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TRUE--FALSE EXERCISES 1.3

1. If A is an m× n matrix and n > m, then the
equation Ax = 0 will have infinitely many
solutions.

2. If the system of equations Ax = b is incon-
sistent, then the augmented matrix [A | b]
has a pivot position in the last column.

3. If A is an m×n matrix and Ax = 0 for some
nonzero vector x, then m ≥ n.

4. If A is an m×n matrix and Ax = 0 for some
nonzero vector x, then m < n.

5. A system of equations Ax = 0 has a non-
trivial solution if and only if the columns
of A form a linearly dependent set.

6. The vector x = [7; 6;−5]T is in the kernel

of the matrix

[
1 3 5
2 −1 4

]

7. The kernel of

⎡
⎣ 3 7 6

2 1 0
3 0 0

⎤
⎦ consists solely of

the vector 0.

8. If Ax = b and Ay = b, then x − y is in the
kernel of A.

9. If Ax = b and Ay = b, then y + x is in the
kernel of A.

10. If Ax = b == 0 and Ay = 0, then x + y is in
the kernel of A.

11. If A is row equivalent to C and if B is row
equivalent to C, then the kernels of A and
B are the same.

12. If two matrices A and B are row equivalent,
then their kernels are the same.

13. The kernel of a matrix A is the set of all
vectors that can be expressed as linear com-
binations of the columns of A.

14. Every solution of the equation Ax = b is the
sum of two vectors in the kernel of A.

15. If the columns of a matrix form a linearly
dependent set of vectors, then the kernel of
that matrix contains nonzero vectors.

16. There exists a 4 × 4 matrix A having three
pivot positions, namely, a11; a23, and a44.

17. One of the pivot positions in this matrix is
the (1; 1)-position (i.e., the position a11 in

the usual notation):

⎡
⎣ 0 3 2

5 7 3
2 −7 1

⎤
⎦

18. The rank of the matrix

⎡
⎢⎢⎣

2 9 4 3
0 7 8 5
0 0 −6 2
0 0 3 −1

⎤
⎥⎥⎦

is 4.

19. It is possible for a p×q matrix to have rank
p + 1.

20. The rank of the matrix

⎡
⎣ 0 0 0 6

0 3 4 8
4 2 7 5

⎤
⎦ is 4.

21. Consider a system of equations Ax = b. If
the ranks of the coefficient matrix and the
augmented matrix are the same, then the
system is consistent.

22. A system of equations Ax = 0 has a non-
trivial solution if and only if the rows of A
form a linearly dependent set.
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104 CHAPTER 1 Systems of Linear Equations

23. The rank of a matrix and the rank of its
reduced row echelon form are the same.

24. If A is an m × n matrix and m < n, then
the equation Ax = 0 has some nontrivial
solutions.

25. A system of linear equations is inconsistent
if the reduced row echelon form of its aug-
mented matrix has a pivot element in every
column.

26. Consider a system of equations whose aug-

mented matrix is

⎡
⎣ 1 0 −4=3 −1

0 1 0 2
0 0 0 0

⎤
⎦

The general solution of this system can be
written as⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ −1

2
0

⎤
⎦ + x3

⎡
⎣ 4=3

0
1

⎤
⎦

27. In the preceding exercise, the solution set
can be described as the set of vectors⎡
⎣ −1

2
0

⎤
⎦ + t

⎡
⎣ 4

0
3

⎤
⎦, where t ∈ R.

28. Every homogeneous system of linear equa-
tions is consistent.

29. Every homogeneous system of linear equa-
tions has many solutions.

30. Let A =

[
1 −2 −9 5
0 1 2 −6

]
. Every solution

to the equation Ax = 0 is a linear combina-

tion of the vectors

[
5
−2

]
and

[
7
6

]
.

31. Let u = (1; 3; 2), v = (2;−1; 3), and
w = (3; 2; 5). The set {u; v; w} is linearly
dependent.

32. This set of three vectors is linearly in-
dependent: u = (1; 3; 5), w = (2; 0; 1),
z = (0; 0; 3).

33. The set of columns in a matrix A is linearly
independent if the equation Ax = 0 has a
nontrivial solution.

34. Let A =

⎡
⎣0 1 4

1 2 −1
5 8 0

⎤
⎦ B =

⎡
⎣1 2 −1

0 1 4
0 0 13

⎤
⎦

Assume as known that A and B are row
equivalent to each other. The set of columns
in A is linearly independent.

35. Let A =

⎡
⎣ 21 31 73 2

23 92 −57 69
19 29 72 11

⎤
⎦

The set of columns in this matrix is linearly
independent.

36. Let A =

⎡
⎣ 1 0 29

7 0 13
13 0 −53

⎤
⎦

The set of columns in this matrix is linearly
independent.

37. To determine whether a set of vectors is lin-
early dependent, we put the vectors into
a matrix A as rows, and attempt to find
nontrivial solutions to the corresponding
homogeneous system of equations, Ax = 0.

38. Let A be a 6× 6 matrix such that the equa-
tion Ax = b is consistent for each vector
b in R

6. A valid deduction from this in-
formation is that the equation Ax = 0 has
nontrivial solutions.

39. If each row of an m×n matrix A has a pivot
position, then the rows of that matrix span
R

n.
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40. If the columns of a matrix A span R
k and

A has dimensions k × q, then the system
of equations Ax = b is consistent for all
vectors b in R

k.

41. If the system of equations Ax = b is incon-
sistent, then b is not in the span of the set
of columns of A.

42. A system of linear equations Ax = b is in-
consistent if and only if b is in the span of
the rows of A.

43. If the system of equations Ax = b is consis-
tent for all b ∈ R

m, then the columns of A
span R

m.

44. This system has a nontrivial solution:{
3x1 − 5x2 + x3 = 0

2x1 + 3x2 + 9x3 = 0

45. Consider x1(C3H8) + x2(O2) = x3(CO2) +
x4(H2O). To balance this chemical equa-
tion, we can let x1 = 1, x2 = 5, x3 = 3, and
x4 = 4.

46. Let {v1; v2; : : : ; vn} be a set of n vectors in
R

m, and suppose that m > n. A valid con-
clusion is that the set is linearly dependent.

47. For a 5 × 4 matrix A, the equation Ax = 0
implies either A = 0 or x = 0.

48. Let A =

[
1 2 3
2 1 1

]
and x = [1;−5; 3]T .

Then x is in the kernel of A.

49. The kernel of

⎡
⎣ 4 8 7

3 4 0
7 0 0

⎤
⎦ consists solely of

the vector 0.

50. If the columns of a matrix form a linearly
independent set of vectors, then the kernel
of that matrix contains only the zero vector.

51. The set of rows in the matrix⎡
⎣ 1 0 29

7 0 13
13 0 −53

⎤
⎦

is linearly independent.

52. If S is a linearly dependent set of vectors,
then each vector in S is a linear combina-
tion of the other vectors in S.

53. If each column of an m × n matrix has a
pivot position, then the columns of that ma-
trix span R

n.

54. Let A be an m× n matrix for which n > m.
If the equation Ax = b is consistent, then it
has many solutions.

55. Let A be a p × q matrix, and suppose that
q > p. Then it is possible in some cases for
A to have rank p + 1.

56. The vector 3
4 u2 is in the span of the set of

three vectors {u1; u2; u3}.
57. Consider the plane in R

3 defined by the
equation x1 − 4x2 + 3x3 = 0. An alterna-
tive, parametric, description of this plane
is x = tu + sv, where x = (x1; x2; x3),
u = (4; 1; 0), and v = (−3; 0; 1).

58. If the matrix A has more rows than
columns, then for some vectors b the sys-
tem Ax = b will be inconsistent. (Here A
should be m× n and b ∈ R

m.)

59. If x and y are in the kernel of a matrix A,
then 3x− 2y is also in the kernel.

60. The vector

⎡
⎣ 1

2
−1

⎤
⎦ is in the kernel of the

matrix

[
1 1 3
2 1 4

]
.
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61. The kernel of

⎡
⎣ 4 8 0

3 0 0
3 6 11

⎤
⎦ consists solely of

the vector 0.

62. If the rows of a matrix form a linearly in-
dependent set of vectors, then the kernel of
that matrix contains only the zero vector.

63. One of the pivot positions in this matrix is
the (1,2)-position (i.e., the position a12 in

the usual notation):

⎡
⎣ 0 1 2

5 7 3
2 −7 1

⎤
⎦

64. The rank of

⎡
⎢⎢⎣

5 3 6 11
0 7 2 9
0 0 5 −3
0 0 −15 9

⎤
⎥⎥⎦ is 4.

65. If each row of an m×n matrix A has a pivot
position, then for every b in R

m the system
Ax = b is consistent.

66. Let A be an m× n matrix for which n > m.
Then, for every b in R

m, the equation Ax =
b has many solutions.

67. This set of three vectors is linearly indepen-
dent:⎧⎨
⎩u =

⎡
⎣ 1

3
5

⎤
⎦ w =

⎡
⎣ 2

0
1

⎤
⎦ z =

⎡
⎣ 0

0
3

⎤
⎦
⎫⎬
⎭

68. Consider a system of equations Ax = b. If
the rank of the coefficient matrix is less than
the rank of the augmented matrix, then the
system is consistent.

69. The span of a set of vectors {u1; u2; : : : ; uk}
is the collection of all vectors that can be
written in the form c1u1 + c2u2 + · · ·+ ckuk,
using integers c1; c2; : : : ; ck.

70. If the columns of a matrix form a linearly
independent set of vectors, then the kernel
of that matrix contains only the zero vector.

71. Let A be an m× n matrix for which n < m.
If the equation Ax = b is consistent, then it
has many solutions.

72. The rank of the matrix

⎡
⎣ 4 2 7 5

0 3 4 8
0 0 0 6

⎤
⎦ is 3.

73. This set of three vectors is linearly depen-
dent:⎧⎨
⎩u =

⎡
⎣ 1

3
5

⎤
⎦ w =

⎡
⎣ 2

0
1

⎤
⎦ z =

⎡
⎣ 0

0
3

⎤
⎦
⎫⎬
⎭

74. If Ker(A) = Ker(B), then A ∼ B.

75. Every set of four vectors in R
3 is linearly

independent.

76. If A is a p × q matrix and if q > p, then
every equation of the form Ax = b (where
b ∈ R

p) will have a free variable and there-
fore will have infinitely many solutions.

77. If A is an m× n matrix and n < m, then the
equation Ax = 0 will have infinitely many
solutions.

78. Consider a system of equations Ax = b.
If the rank of the coefficient matrix is the
same as the rank of the augmented matrix,
then the system is consistent.

79. If x and y are in the kernel of a matrix A,
then x− y is also in the kernel.

80. If the system of equations Ax = b has one
or more free variables, then the system has
many solutions.
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81. If the system Ax = 0 has a free variable, then
the system has many solutions. In this case,
the kernel (or null space) of A has dimen-
sion 1 or greater.

82. The zero element in the matrix

⎡
⎣ 0 2 5

3 1 1
4 3 6

⎤
⎦

does not occupy a pivot position.

MULTIPLE-CHOICE EXERCISES 1.3

Always select the first correct answer.

1. Consider

⎡
⎣ 3 −7 11 9 0 5

0 6 −5 4 1 17
0 0 0 0 9 0

⎤
⎦

What are all the free variables in solving a
system with this augmented matrix?
a. x1; x2,x5 b. x3 and x4 c. x4

d. There are no free variables.
e. None of these.

2. What are all the free variables in the system
of equations whose coefficient matrix is⎡
⎣ 0 7 9 4 3 0 2

0 0 0 6 5 3 1
0 0 0 0 0 4 2

⎤
⎦?

a. x3; x4; x5 b. x1; x3; x5

c. x1; x3; x5; x7 d. x2; x4; x6

e. None of these.

3. Consider

⎡
⎣ 0 4 3 4 6 11 5

0 0 0 7 2 8 7
0 0 0 0 0 3 2

⎤
⎦

A system of linear equations has the aug-
mented matrix shown. What are all the free
variables?
a. x2, x4, x6 b. x3, x5 c. x1, x3, x5

d. x1, x3, x5, x7 e. None of these.

4. Consider

⎡
⎣ 1 −2 0 0 7 −3

0 1 0 0 −3 1
0 0 0 1 5 −4

⎤
⎦

The general solution of the system having
this augmented matrix is

a. (−1; 1; 0;−4; 0)
b. x1 = −1 − x5, x2 = 1 + 3x5, x3 free,

x4 = −4− 5x5, x5 free
c. x1 = −3 − 7x5 + 2x2, x2 free, x3 free,

x4 = −4− 5x5, x5 free
d. x1+x5 = −1,x2−3x5 = 1,x4+5x5 = −4,

x3 free
e. None of these.

5. Consider

⎧⎨
⎩

x3 − x1 = 14
x2 − x1 = 3

x3 − 3x2 + x1 = 7

A solution, (x1; x2; x3), of this system is
a. (−26;−11; 32) b. (−2; 1; 12)
c. (1; 0; 15) d. (1; 15; 4)
e. None of these.

6. Consider

⎧⎨
⎩

x2 + 5x3 = −4
x1 + 4x2 + 3x3 = −2

2x1 + 7x2 + 2x3 = −1

A solution vector for the system shown is
a. (0, 4, 1) b. (−3; 1;−1)
c. (4; 1;−1) d. (1; 1;−2)
e. None of these.

7. Which set is linearly independent?

a.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

b.

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

2
0
1
0

⎤
⎥⎥⎦ ;

⎡
⎢⎢⎣

0
3
0
0

⎤
⎥⎥⎦ ;

⎡
⎢⎢⎣

8
3
4
6

⎤
⎥⎥⎦ ;

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭
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108 CHAPTER 1 Systems of Linear Equations

c.

{[
1 0
0 1

]
;

[
0 1
0 0

]
;

[
2 1
0 2

]}
d. The set {p1; p2; p3} where p1(t) = t + t2,

p2(t) = t2 + t3, p3(t) = t + t3

e. None of these.

8. Let K be the kernel of a matrix A; that is,
K = {x : Ax = 0}. Which assertion may be
false?
a. If x and y are in K , then so is x− y.
b. If Ay = b and Ax = 2b, then 2y− x is in

K .
c. If Ay = bandx is inK ,thenA(x+2y) = b.
d. If Ax = b and Ay = b, then y is the sum

of x and a member of K .
e. None of these.

9. For which matrix A does the homogeneous
equation Ax = 0 have nontrivial solutions?

a.

⎡
⎣ 5 3 1 4
−1 6 3 5

2 −4 1 9

⎤
⎦ b.

⎡
⎢⎢⎣

1 4 2 3
3 −1 3 5
1 0 6 9
5 7 7 8

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

3 9 8 2
4 4 7 1
3 2 1 5
5 5 4 4

⎤
⎥⎥⎦ d.

⎡
⎢⎢⎣

6 4 1
2 1 3
4 2 2
5 0 3

⎤
⎥⎥⎦

e. None of these.

10. Consider

⎡
⎣ 0 0 0 0 9 0

0 6 −5 4 1 17
3 −7 11 9 0 5

⎤
⎦

What are all the free variables in solving a
system with this augmented matrix?
a. x1; x2, x5, b. x3, x4 c. x4

d. There are no free variables
e. None of these.

11. For what value of c is the set of vectors
{[1; 2; 3; 1]; [1; 3; 3; 2]; [1; 5; 6; 7]; [1; 1; 5; c]}
linearly dependent?
a. 0 b. 2 c. 5 d. 7
e. None of these.

12. Let u = (1; 4; 7), v = (2; 8;−11), w =
(3; 12;−4), z = (0; 0; 0). Which set is lin-
early independent?
a. {u; v; w}, b. {v; w}
c. {u; v; w; z} d. {v; w; z}
e. None of these.

13. Let v1 = (1; 3;−3), v2 = (3; 10;−1),
v3 = (−2;−1; h). For what value of h is
{v1; v2; v3} linearly dependent?
a. 0 b. 6
c. 64 d. 46
e. None of these.

14. Let v = (0; 0; 0), w = (1; 2; 3), y =
(2; 4;−6), z = (3; 6;−3), u = (1; 0; 1).
Which set is linearly independent?
a. {w; y} b. {w; y; z} c. {w; y; v}
d. {z; v} e. None of these.

15. (Continuation.) Use the vectors v; w; y; z; u
from the preceding problem. Which set is
linearly dependent?
a. {w; y} b. {u; z} c. {u; y}
d. {u; z; y; w} e. None of these.

16. Which set is linearly independent?
a. {(1; 3; 2); (−2; 1; 4); (3; 3; 4); (1; 0; 2)}
b. {(1; 3; 2); (−2; 1; 4); (19; 15;−10)}
c. {p1; p2; p3}, where p1(x) = x2 − 3x + 7,

p2(x) = 2x2 + x− 3, and
p3(x) = x2 + 11x− 27

d. {(1; 1; 0); (0; 1; 1); (1; 0; 1)}
e. None of these.

17. If A is a 5 × 3 matrix, which conclusion is
valid?
a. The set of rows is linearly dependent.
b. The set of columns is linearly indepen-

dent.
c. The set of rows is linearly independent.
d. The set of columns is linearly dependent.
e. None of these.
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18. If A is a 3 × 5 matrix, which conclusion is
valid?
a. The set of rows is linearly dependent.
b. The set of columns is linearly indepen-

dent.
c. The set of rows is linearly independent.
d. The set of columns is linearly dependent.
e. None of these.

19. Let A be a 3×4 matrix whose columns form
a linearly independent set. Which conclu-
sion is justified?
a. The set of rows in A is linearly depen-

dent.
b. The equation Ax = b is consistent for

every b in R
4.

c. The equation Ax = 0 has a nontrivial
solution.

d. There is a matrix AB such that AB = I4.
e. None of these.

20. Let A be a 4×3 matrix whose columns form
a linearly independent set. Which conclu-
sion is justified?
a. The set of rows in A is linearly depen-

dent.
b. The equation Ax = b is consistent for

every b in R
4.

c. The equation Ax = 0 has a nontrivial
solution.

d. There is a matrix B such that AB = I4.
e. None of these.

21. Which condition implies that the system of
equations Ax = b has a solution?
a. The columns of A form a linearly inde-

pendent set.
b. The vector b is in the span of the set of

columns of A.
c. The equation Ax = 0 has only the trivial

solution.
d. The reduced row echelon form of A has

no zero row.
e. None of these.

22. Which point is not in the kernel of the

matrix

[
1 2 0
3 7 4

]
?

a.

⎡
⎣ 8
−4

1

⎤
⎦ b.

⎡
⎣ 2
−1

3

⎤
⎦ c.

⎡
⎣−16

8
−2

⎤
⎦

d.

⎡
⎣0

0
0

⎤
⎦ e. None of these.

23. Let A = [1 − 2 − 5]. (This is a 1 × 3
matrix.) Every solution of Ax = 0 is a linear
combination of which pair of vectors?

a.

⎡
⎣ 1

2
0

⎤
⎦,

⎡
⎣ 0

0
5

⎤
⎦ b.

⎡
⎣ 2

1
0

⎤
⎦,

⎡
⎣ 5

0
1

⎤
⎦

c.

⎡
⎣ 1
−2

0

⎤
⎦,

⎡
⎣ 0
−5

1

⎤
⎦ d.

⎡
⎣7

1
1

⎤
⎦,

⎡
⎣1

1
1

⎤
⎦

e. None of these.

24. Let A be an m× n matrix whose rows span
R

n. What conclusion is valid?
a. m ≥ n

b. Each row of A has a pivot element.
c. The set of rows in A is linearly

independent.
d. The set of columns in A is linearly

dependent.
e. None of these.

25. Let A be an m× n matrix of rank n. Which
conclusion is justified?
a. The kernel of A is {0}.
b. The range of A is R

m.
c. m ≤ n

d. n > m

e. None of these.
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110 CHAPTER 1 Systems of Linear Equations

26. Let A be an m × n matrix whose columns
span R

m. Which one of these conclusions is
unjustified?
a. n ≥ m

b. The rows of A span R
n

c. For every b in R
m, the equation Ax = b

is consistent.
d. Every row of A has a pivot position.
e. None of these.

27. Three vectors u; v; w are specified in a vec-
tor space. Four sets of vectors are defined:
S = {u; v; 0}, T = {u + v; u − v; u + 3v},
Q = {u; 2v; u−v; w},Z = {u; u+v; w+u; w}.
Select the largest set that is necessarily lin-
early dependent.
a. S; T b. S; T; Q; Z c. S; T; Z

d. T; Q e. None of these.

28. We form sets S = {v1; v2; v3; 0}, T = {v1 +
v2; v1−v2; v2−v1},Q = {v1; 2v2; v1−v2; v3},
W = {v1; v2 + v1; v3 + v1 + v2; v3} from three
different vectors v1; v2; v3 in R

7. Give a list
of all the sets that are linearly dependent.
a. S; T; Q; W b. S; T; Q c. S; T; W

d. T; Q e. None of these.

29. Let u = (1; 4; 7), v = (2; 8;−11), w =
(3; 12;−4), and z = (0; 0; 0). Which set is
linearly independent?
a. {u; v; w} b. {v; w} c. {u; v; w; z}
d. {v; w; z} e. None of these.

30. Find a vector x having integer compo-
nents xi so that this chemical equation is
balanced: x1(Na3PO4) + x2(Ba(NO3)2) =
x3(Ba3(PO4)2) + x4(NaNO3) involving
sodium phosphate, barium nitrate, barium
phosphate, and sodium nitrate. The ele-
ments are sodium Na, phosphorus P, oxy-
gen O, barium Ba, and nitrogen N.
a. x = (1; 2; 3; 4) b. x = (3; 2; 6; 4)
c. x = (2; 3; 1; 6) d. x = (3; 5; 2; 1)
e. None of these.

31. Find integers x; y; z; w so that this chemical
equation is balanced: x(B2S3) + y(H2O) =
z(H3BO3) + w(H2S) involving boron B,
sulfur S, hydrogen H, oxygen O, and wa-
ter H2O.
a. x = 6; y = 2; z = 4; w = 8
b. x = 1; y = 6; z = 2; w = 3
c. x = 1; y = 2; z = 3; w = 4
d. x = 6; y = 1; z = 2; w = 3
e. None of these.

32. Find a vector x with integer components xi

so that this chemical equation is balanced:
x1(PbN6) + x2(Mn2O8) = x3(Pb3O4) +
x4(MnO2) + x5(NO) involving lead Pb,
nitrogen N, manganese Mn, and oxygen O.
a. x = (15; 44; 5; 22; 88)
b. x = (5; 4; 1; 2; 8)
c. x = (6; 11; 2; 22; 36)
d. x = (2; 3; 1; 4)
e. None of these.

33. Let v1 = (1; 2; 1), v2 = (3; 1; 3), and v3 =
(5; 3; 3). This set of three vectors is linearly
dependent because av1 + bv2 + cv3 = 0. The
coefficients a, b, and c are
a. a = 6; b = 2; c = 4
b. a = 1; b = 6; c = 2
c. a = 2; b = 1; c = −1
d. a = 6; b = 1; c = 2
e. None of these.

34. All solutions of

[
1 2 1 0
3 4 −3 0

]
are mul-

tiples of
a. (5;−2; 1)
b. (5;−3; 1)
c. (0; 0; 0)
d. (6; 1; 2)
e. None of these.
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SECTION 1.3 Kernels, Rank, Homogeneous Equations 111

35. The general solution of 5x1 + 2x2 − x3 = 0
is the span of this pair:
a. (1; 2; 1); (3; 1; 2)
b. (− 2

5 ; 1; 0); ( 1
5 ; 0; 1)

c. (−2; 5; 0); (1; 0; 5)
d. (10; 0; 50); (−20; 50; 0)
e. None of these.

36. Consider the augmented matrix⎡
⎣ 1 4 6 0

2 5 9 0
3 6 12 0

⎤
⎦

The general solution of this system is all
multiples of
a. (−2;−1;−1) b. (−2;−1; 1)
c. (2; 1;−1) d. (−1; 1

2 ;− 1
2 )

e. None of these.

37. What is the general solution of a system
whose augmented matrix is⎡
⎣ 1 4 6 3

2 5 9 7
3 6 12 11

⎤
⎦?

a. (1; 1
2 ; 1

2 )
b. (13=3;− 1

3 ; 0) + t(−2;−1; 1)
c. (13;−1; 0) + s(2; 1;−1)
d. (10; 0; 50) + x3(1; 1

2 ;− 1
2 )

e. None of these.

38. Which matrix does not have rank 2?

a.

[
1 2
3 6

]
b.

[
1 3 0
0 0 1

]

c.

⎡
⎣ 1 3 0 4

0 0 1 2
0 0 0 0

⎤
⎦ d.

⎡
⎣ 1 3 5

2 −2 −2
3 1 3

⎤
⎦

e. None of these.

39. Students Octavio and Valeria compute the

kernel of the matrix

[
1 3 2 2
2 5 2 1

]
. Octavio

claims that the kernel is the span of this pair

of vectors (7;−3; 0; 1) and (4;−2; 1; 0). But
Valeria insists that the kernel is the span of
(−20; 10;−5; 0) and (21;−9; 0; 3).Which is
right?
a. Only Valeria b. Only Octavio
c. Both of them. d. Neither of them.

40. Let A be a 5×4 matrix whose columns form
a linearly independent set. Which conclu-
sion is justified?
a. The equation Ax = b is consistent for

every b in R
5.

b. The set of rows in A is linearly depen-
dent.

c. There is a matrix AB such that AB = I5.
d. The equation Ax = 0 has a nontrivial

solution.
e. None of these.

41. Let K be the kernel of a matrix A; that is,
K = {x : Ax = 0}. Which assertion must be
true?
a. If x and y are in K , then so is x− y.
b. If Ay = b and Ax = 2b, then 2y− x is in

K .
c. If Ay = b and x is in K , then A(x + 2y) =

b.
d. If Ax = b and Ay = b, then y is the sum

of x and a member of K .
e. None of these.

42. For which matrix A does the homogeneous
equation Ax = 0 have nontrivial solutions?

a.

⎡
⎣ 5 3 1 4
−1 6 3 5

2 −4 1 9

⎤
⎦ b.

⎡
⎢⎢⎣

1 4 2 3
3 −1 3 5
1 0 6 9
5 7 7 8

⎤
⎥⎥⎦

c.

⎡
⎢⎢⎣

3 9 8 2
4 4 7 1
3 2 1 5
5 5 4 4

⎤
⎥⎥⎦ d.

⎡
⎢⎢⎣

6 4 1
2 1 3
4 2 2
5 0 3

⎤
⎥⎥⎦

e. None of these.
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112 CHAPTER 1 Systems of Linear Equations

43. Define three polynomials:
u1(t) = 7t5 − 4t2 + 3
u2(t) = 2t5 + 5t2

u3(t) = 8t5 − 23t2 + 6
Which of the following equations estab-
lishes the linear dependence of the set
{u1; u2; u3}?
a. 2u1(t)− 7u2(t) = 6− 43t2

b. 4u2(t)− u3(t) = 6− 43t2

c. 2u1(t)− 3u2(t) = u3(t)
d. tu1(t) + tu2(t) = 9t6 + t3 + 3t

e. None of these.

44. Let A =

⎡
⎣ 1 −2 2 1

3 4 −2 5
2 −1 0 1

⎤
⎦

The rank of A is
a. 2 b. 1 c. 4 d. 3
e. None of these.

45. Let A be a 5×4 matrix whose columns form
a linearly independent set. Which conclu-
sion is justified?
a. The equation Ax = b is consistent for

every b in R
5.

b. The set of rows in A is linearly depen-
dent.

c. There is a matrix AB such that AB = I5.
d. The equation Ax = 0 has a nontrivial

solution.
e. None of these.

COMPUTER EXERCISES 1.3

1. Consider the following scenario. An uniden-
tified object is observed in the night sky dur-
ing a period of several days, and accurate
coordinates of this object have been made
available by astronomers. The orbit of such
an object should be a conic section: circle,
ellipse, hyperbola, parabola, or a straight line.
This means that if the locations are plot-
ted on a plane, one of these types of conic
sections should be evident. In particular, if
the orbit is an ellipse, the object will re-
turn after a certain number of years, whereas
if the orbit is a parabola or hyperbola it
will not return. An arbitrary conic section
in (x; y) coordinates should have the form
ax2 + bxy + cy2 + dx + ey = 1.

a. Find the values of a, b, c, d, and e from these
five points on the orbit: (1:8; 3:1), (1:4; 1:9),
(2:5; 1:2), (4:0; 1:6), (4:8; 2:5).

b. Determine whether the orbit is elliptical,
parabolic, or hyperbolic.

c. Find a formula by which the y-values can
be computed from the x-values in this orbit.
Remember, there may be two y-values for a
given x, since there is a quadratic equation to
be solved.

d. If you have suitable facilities at your disposal,
obtain a plot of the orbit.
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