
“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page 1 — #2

1

PETER LINZ

SUSAN H. RODGER

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page 2 — #3

World Headquarters
Jones & Bartlett Learning
25 Mall Road
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact
Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations,
professional associations, and other qualified organizations. For details and specific discount information, contact
the special sales department at Jones & Bartlett Learning via the above contact information or send an email to
specialsales@jblearning.com.

Copyright c© 2023 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without
written permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that
of Jones & Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by
Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement purposes.
All trademarks displayed are the trademarks of the parties noted herein. An Introduction to Formal Languages and
Automata, Seventh Edition is an independent publication and has not been authorized, sponsored, or otherwise approved
by the owners of the trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate
in the activities represented in the images. Any screenshots in this product are for educational and instructive purposes
only. Any individuals and scenarios featured in the case studies throughout this product may be real or fictitious but
are used for instructional purposes only.

Production Credits

Vice President, Product Management: Marisa R. Urbano Content Services Manager: Colleen Lamy

Vice President, Product Operations: Christine Emerton VP, Manufacturing and Inventory Control: Therese Connell

Product Manager: Ned Hinman Product Fulfillment Manager: Wendy Kilborn

Director, Content Management: Donna Gridley Composition: Straive

Content Strategist: Melissa Duffy Project Management: Straive

Content Coordinator: Mark Restuccia Cover Design: Briana Yates

Director, Project Management and Content Services: Rights & Permissions Manager: John Rusk

Karen Scott Rights Specialist: James Fortney

Manager, Project Management: Jessica deMartin Cover and Title Page: c© VS148/Shutterstock.

Project Manager: Roberta Sherman Printing and Binding: Gasch Printing.

Senior Digital Project Specialist: Angela Dooley

Library of Congress Cataloging-in-Publication Data
Names: Linz, Peter, author. | Rodger, Susan H., author.
Title: An introduction to formal languages and automata / Peter Linz, Susan H.

Rodger.
Description: Seventh edition. | Burlington, Massachusetts : Jones &

Bartlett Learning, [2023] | Includes bibliographical references and
index.

Identifiers: LCCN 2021047487 | ISBN 9781284231601 (paperback)
Subjects: LCSH: Formal languages. | Machine theory.
Classification: LCC QA267.3 .L56 2023 | DDC 005.13/1–dc23/eng/20210927
LC record available at https://lccn.loc.gov/2021047487

6048

Printed in the United States of America

26 25 24 23 22 10 9 8 7 6 5 4 3 2 1

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page 3 — #4

To Thomas and the Memory of My Father

— S. Rodger

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page 4 — #5

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page v — #6

© VS148/Shutterstock.

CONTENTS

PREFACE xi

PART I: THEORY 1

1 INTRODUCTION TO THE THEORY
OF COMPUTATION 3
1.1 Mathematical Preliminaries and Notation 5

Sets . 5
Functions and Relations . 8
Graphs and Trees . 10
Proof Techniques . 11

1.2 Three Basic Concepts . 19
Languages . 19
Grammars . 22
Automata . 28

1.3 Some Applications* . 32

2 FINITE AUTOMATA 39
2.1 Deterministic Finite Accepters 40

Deterministic Accepters and Transition Graphs 41
Languages and Dfa’s . 43
Regular Languages . 48

2.2 Nondeterministic Finite Accepters 53
Definition of a Nondeterministic Accepter 54
Why Nondeterminism? . 58

v

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page vi — #7

vi Contents

2.3 Equivalence of Deterministic and Nondeterministic
Finite Accepters . 61

2.4 Reduction of the Number of States in Finite Automata* . . . 69

3 REGULAR LANGUAGES AND
REGULAR GRAMMARS 77
3.1 Regular Expressions . 78

Formal Definition of a Regular Expression 78
Languages Associated with Regular Expressions 79

3.2 Connection Between Regular Expressions
and Regular Languages . 84
Regular Expressions Denote Regular Languages 84
Regular Expressions for Regular Languages 87
Regular Expressions for Describing Simple Patterns 93

3.3 Regular Grammars . 97
Right- and Left-Linear Grammars 97
Right-Linear Grammars Generate Regular Languages 99
Right-Linear Grammars for Regular Languages 101
Equivalence of Regular Languages and Regular Grammars . . 103

4 PROPERTIES OF REGULAR LANGUAGES 107
4.1 Closure Properties of Regular Languages 108

Closure under Simple Set Operations 108
Closure under Other Operations 111

4.2 Elementary Questions about Regular Languages 120
4.3 Identifying Nonregular Languages 123

Using the Pigeonhole Principle 124
A Pumping Lemma . 125

5 CONTEXT-FREE LANGUAGES 137
5.1 Context-Free Grammars . 138

Examples of Context-Free Languages 139
Leftmost and Rightmost Derivations 141
Derivation Trees . 142
Relation Between Sentential Forms and Derivation Trees . . . 145

5.2 Parsing and Ambiguity . 149
Parsing and Membership . 149
Ambiguity in Grammars and Languages 154

5.3 Context-Free Grammars and Programming Languages 160

6 SIMPLIFICATION OF CONTEXT-FREE
GRAMMARS AND NORMAL FORMS 165
6.1 Methods for Transforming Grammars 166

A Useful Substitution Rule 167
Removing Useless Productions 169

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page vii — #8

Contents vii

Removing λ-Productions . 173
Removing Unit-Productions 175

6.2 Two Important Normal Forms 182
Chomsky Normal Form . 182
Greibach Normal Form . 185

6.3 A Membership Algorithm for Context-Free Grammars* . . . 189

7 PUSHDOWN AUTOMATA 193
7.1 Nondeterministic Pushdown Automata 194

Definition of a Pushdown Automaton 195
The Language Accepted by a Pushdown Automaton 198

7.2 Pushdown Automata and Context-Free Languages 204
Pushdown Automata for Context-Free Languages 204
Context-Free Grammars for Pushdown Automata 209

7.3 Deterministic Pushdown Automata and Deterministic
Context-Free Languages . 216

7.4 Grammars for Deterministic Context-Free Languages* 221

8 PROPERTIES OF CONTEXT-FREE LANGUAGES 227
8.1 Two Pumping Lemmas . 228

A Pumping Lemma for Context-Free Languages 228
A Pumping Lemma for Linear Languages 233

8.2 Closure Properties and Decision Algorithms for
Context-Free Languages . 237
Closure of Context-Free Languages 238
Some Decidable Properties of Context-Free Languages 242

9 TURING MACHINES 247
9.1 The Standard Turing Machine 248

Definition of a Turing Machine 248
Turing Machines as Language Accepters 255
Turing Machines as Transducers 258

9.2 Combining Turing Machines for Complicated Tasks 266
9.3 Turing’s Thesis . 271

10 OTHER MODELS OF TURING MACHINES 275
10.1 Minor Variations on the Turing Machine Theme 276

Equivalence of Classes of Automata 276
Turing Machines with a Stay-Option 277
Turing Machines with Semi-Infinite Tape 279
The Off-Line Turing Machine 281

10.2 Turing Machines with More Complex Storage 284
Multitape Turing Machines 284
Multidimensional Turing Machines 287

10.3 Nondeterministic Turing Machines 289

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page viii — #9

viii Contents

10.4 A Universal Turing Machine 292
10.5 Linear Bounded Automata . 297

11 A HIERARCHY OF FORMAL LANGUAGES
AND AUTOMATA 301
11.1 Recursive and Recursively Enumerable Languages 302

Languages That Are Not Recursively Enumerable 304
A Language That Is Not Recursively Enumerable 305
A Language That Is Not Recursively Enumerable but Not
Recursive . 307

11.2 Unrestricted Grammars . 309
11.3 Context-Sensitive Grammars and Languages 315

Context-Sensitive Languages and Linear Bounded Automata 316
Relation Between Recursive and Context-Sensitive
Languages . 318

11.4 The Chomsky Hierarchy . 321

12 LIMITS OF ALGORITHMIC COMPUTATION 325
12.1 Some Problems That Cannot Be Solved by Turing Machines . 326

Computability and Decidability 326
The Turing Machine Halting Problem 327
Reducing One Undecidable Problem to Another 331

12.2 Undecidable Problems for Recursively Enumerable
Languages . 335

12.3 The Post Correspondence Problem 339
12.4 Undecidable Problems for Context-Free Languages 345
12.5 A Question of Efficiency . 348

13 OTHER MODELS OF COMPUTATION 351
13.1 Recursive Functions . 353

Primitive Recursive Functions 354
Ackermann’s Function . 358
μ Recursive Functions . 359

13.2 Post Systems . 362
13.3 Rewriting Systems . 366

Matrix Grammars . 366
Markov Algorithms . 367
L-Systems . 369

14 AN OVERVIEW OF COMPUTATIONAL
COMPLEXITY 371
14.1 Efficiency of Computation . 372
14.2 Turing Machine Models and Complexity 374
14.3 Language Families and Complexity Classes 378

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page ix — #10

Contents ix

14.4 The Complexity Classes P and NP 381
14.5 Some NP Problems . 383
14.6 Polynomial-Time Reduction 386
14.7 NP-Completeness and an Open Question 389

PART II: APPLICATIONS 393

15 COMPILERS AND PARSING 395
15.1 Compilers . 396
15.2 Top-Down vs. Bottom-Up Parsing 404
15.3 FIRST Function . 409
15.4 FOLLOW Function . 416

16 LL PARSING 423
16.1 Context-Free Grammar Conversion to Nondeterministic

Pushdown Automaton . 424
Pushdown Automata for LL Parsing 424
Algorithm to Convert Context-Free Grammar to NPDA
for LL Parsing . 424

16.2 LL(1) Parse Table . 429
LL(1) Parse Table . 429

16.3 LL(1) Parsing Algorithm . 431
LL(1) Parsing Algorithm . 432

16.4 LL(k) Parsing . 435

17 LR PARSING 441
17.1 Context-Free Grammar Conversion to NPDA 443

Algorithm to Convert Context-Free Grammar to NPDA for
LR Parsing . 443

17.2 Items and Closure . 449
17.3 DFA Models the LR Parsing Stack 453

Algorithm to Build DFA Modeling LR Parsing 454
17.4 LR(1) Parse Table . 467

LR(1) Parsing Actions . 468
LR(1) Parse Table Algorithm 468

17.5 LR(1) Parsing Algorithm . 475
LR(1) Parsing Algorithm . 476

17.6 LR(1) Parsing with λ-Productions 481
17.7 LR(1) Parsing Conflicts . 492

APPENDIX A FINITE-STATE TRANSDUCERS 499
A.1 A General Framework . 499
A.2 Mealy Machines . 500
A.3 Moore Machines . 502
A.4 Moore and Mealy Machine Equivalence 504

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page x — #11

x Contents

A.5 Mealy Machine Minimization 508
A.6 Moore Machine Minimization 513
A.7 Limitations of Finite-State Transducers 514

APPENDIX B JFLAP: A USEFUL TOOL 517

ANSWERS: SOLUTIONS AND HINTS
FOR SELECTED EXERCISES 519

REFERENCES FOR FURTHER READING 573

INDEX 575

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page xi — #12

© VS148/Shutterstock.

PREFACE

T his book is designed for an introductory course on formal languages,
automata, computability, and related matters. These topics form a
major part of what is known as the theory of computation. A course

on this subject matter is now standard in the computer science curricu-
lum and is often taught fairly early in the program. Hence, the prospec-
tive audience for this book consists primarily of sophomores and juniors
majoring in computer science or computer engineering.

Prerequisites for the material in this book are a knowledge of some
higher-level programming language (commonly C, C++, PythonTM, or
JavaTM) and familiarity with the fundamentals of data structures and algo-
rithms. A course in discrete mathematics that includes set theory, functions,
relations, logic, and elements of mathematical reasoning is essential. Such
a course is part of the standard introductory computer science curriculum.

The study of the theory of computation has several purposes, most
importantly (1) to familiarize students with the foundations and principles
of computer science, (2) to teach material that is useful in subsequent
courses, and (3) to strengthen students’ ability to carry out formal and
rigorous mathematical arguments. The presentation I have chosen for this
text favors the first two purposes, although I would argue that it also serves
the third. To present ideas clearly and to give students insight into the
material, the text stresses intuitive motivation and illustration of ideas
through examples. When there is a choice, I prefer arguments that are
easily grasped to those that are concise and elegant but difficult in concept.
I state definitions and theorems precisely and give the motivation for proofs

xi

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page xii — #13

xii Preface

but often leave out the routine and tedious details. I believe that this is
desirable for pedagogical reasons. Many proofs are unexciting applications
of induction or contradiction with differences that are specific to particular
problems. Presenting such arguments in full detail is not only unnecessary,
but it interferes with the flow of the story. Therefore, quite a few of the
proofs are brief, and someone who insists on completeness may consider
them lacking in detail. I do not see this as a drawback. Mathematical skills
are not the by-product of reading someone else’s arguments, but they come
from thinking about the essence of a problem, discovering ideas suitable to
make the point, then carrying them out in precise detail. The latter skill
certainly has to be learned, and I think that the proof sketches in this text
provide very appropriate starting points for such a practice.

Computer science students sometimes view a course in the theory of
computation as unnecessarily abstract and of no practical consequence. To
convince them otherwise, one needs to appeal to their specific interests
and strengths, such as tenacity and inventiveness in dealing with hard-to-
solve problems. Because of this, my approach emphasizes learning through
problem solving.

By a problem-solving approach, I mean that students learn the ma-
terial primarily through problem-type illustrative examples that show the
motivation behind the concepts, as well as their connection to the theorems
and definitions. At the same time, the examples may involve a nontrivial
aspect, for which students must discover a solution. In such an approach,
homework exercises contribute to a major part of the learning process. The
exercises at the end of each section are designed to illuminate and illustrate
the material and call on students’ problem-solving ability at various levels.
Some of the exercises are fairly simple, picking up where the discussion in
the text leaves off and asking students to carry on for another step or two.
Other exercises are very difficult, challenging even the best minds. A good
mix of such exercises can be a very effective teaching tool. Students need
not be asked to solve all problems, but should be assigned those that sup-
port the goals of the course and the viewpoint of the instructor. Computer
science curricula differ from institution to institution; while a few empha-
size the theoretical side, others are almost entirely oriented toward practical
application. I believe that this text can serve either of these extremes, pro-
vided that the exercises are selected carefully with the students’ background
and interests in mind. At the same time, the instructor needs to inform the
students about the level of abstraction that is expected of them. This is
particularly true of the proof-oriented exercises. When I say “prove that”
or “show that,” I have in mind that the student should think about how
a proof can be constructed and then produce a clear argument. How for-
mal such a proof should be needs to be determined by the instructor, and
students should be given guidelines on this early in the course.

The content of the text is appropriate for a one-semester course. Most
of the material can be covered, although some choice of emphasis will have

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page xiii — #14

Preface xiii

to be made. In my classes, I generally gloss over proofs, giving just enough
coverage to make the result plausible, and then ask students to read the
rest on their own. Overall, though, little can be skipped entirely without
potential difficulties later on. A few sections, which are marked with an
asterisk, can be omitted without loss to later material. Most of the material,
however, is essential and must be covered.

Appendix B briefly introduces JFLAP, an interactive software tool avail-
able for free at www.jflap.org that is of great help in both learning and
teaching the material in this book. It aids in understanding the concepts
and is a great time saver in the actual construction of the solutions to the
exercises. I highly recommend incorporating JFLAP into the course.

The seventh edition of this book features two additions. The first is
a large number of new exercises, collected at the chapter ends, under the
heading Introductory Exercises to distinguish them from the already exist-
ing Exercises. These new exercises are largely very simple and require only
an understanding of the concepts. They are intended as a bridge to the
often much more difficult Exercises. The instructor can decide where and
for whom these new exercises can be of help. Chapters 1–14 of the sixth
edition, with the new exercises, are now reorganized as Part I: Theory.

Substantial new material comes in Part II: Applications, where we dis-
cuss some of the important issues in compiler construction in the context
of the material in Part I. This new material comes in response to peren-
nial student questions such as “How does this theory apply to the mostly
practical matters of computer science?” or even “Why do we have to know
all this abstract stuff?” We hope we have given a satisfactory response to
such questions.

How can this material be integrated into an existing course? Instruc-
tors who cannot find the time for it might use Part II as suggested reading
for curious students. But the material is important and attractive to many
students, so we recommend that some attempt to cover it in class be made.
Part I introduces the main aspects of the theory of computation, but not ev-
erything there is essential. Not only the starred sections, but many sections
in the latter part can be treated lightly or skipped altogether without loss
of continuity. Doing so might free a week or so for Part II. This coverage
can benefit many students. Those who never take a course on compilers will
get some understanding of what is involved in compiler design; for others
who do, it provides a first look at what will be covered later in more detail.

Peter Linz
Susan H. Rodger

“9781284231601˙TOCx˙Final” — 2022/1/7 — 23:15 — page xiv — #15

