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PREFACE

T his book is designed for an introductory course on formal languages,
automata, computability, and related matters. These topics form a
major part of what is known as the theory of computation. A course

on this subject matter is now standard in the computer science curricu-
lum and is often taught fairly early in the program. Hence, the prospec-
tive audience for this book consists primarily of sophomores and juniors
majoring in computer science or computer engineering.

Prerequisites for the material in this book are a knowledge of some
higher-level programming language (commonly C, C++, PythonTM, or
JavaTM) and familiarity with the fundamentals of data structures and algo-
rithms. A course in discrete mathematics that includes set theory, functions,
relations, logic, and elements of mathematical reasoning is essential. Such
a course is part of the standard introductory computer science curriculum.

The study of the theory of computation has several purposes, most
importantly (1) to familiarize students with the foundations and principles
of computer science, (2) to teach material that is useful in subsequent
courses, and (3) to strengthen students’ ability to carry out formal and
rigorous mathematical arguments. The presentation I have chosen for this
text favors the first two purposes, although I would argue that it also serves
the third. To present ideas clearly and to give students insight into the
material, the text stresses intuitive motivation and illustration of ideas
through examples. When there is a choice, I prefer arguments that are
easily grasped to those that are concise and elegant but difficult in concept.
I state definitions and theorems precisely and give the motivation for proofs

xi
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but often leave out the routine and tedious details. I believe that this is
desirable for pedagogical reasons. Many proofs are unexciting applications
of induction or contradiction with differences that are specific to particular
problems. Presenting such arguments in full detail is not only unnecessary,
but it interferes with the flow of the story. Therefore, quite a few of the
proofs are brief, and someone who insists on completeness may consider
them lacking in detail. I do not see this as a drawback. Mathematical skills
are not the by-product of reading someone else’s arguments, but they come
from thinking about the essence of a problem, discovering ideas suitable to
make the point, then carrying them out in precise detail. The latter skill
certainly has to be learned, and I think that the proof sketches in this text
provide very appropriate starting points for such a practice.

Computer science students sometimes view a course in the theory of
computation as unnecessarily abstract and of no practical consequence. To
convince them otherwise, one needs to appeal to their specific interests
and strengths, such as tenacity and inventiveness in dealing with hard-to-
solve problems. Because of this, my approach emphasizes learning through
problem solving.

By a problem-solving approach, I mean that students learn the ma-
terial primarily through problem-type illustrative examples that show the
motivation behind the concepts, as well as their connection to the theorems
and definitions. At the same time, the examples may involve a nontrivial
aspect, for which students must discover a solution. In such an approach,
homework exercises contribute to a major part of the learning process. The
exercises at the end of each section are designed to illuminate and illustrate
the material and call on students’ problem-solving ability at various levels.
Some of the exercises are fairly simple, picking up where the discussion in
the text leaves off and asking students to carry on for another step or two.
Other exercises are very difficult, challenging even the best minds. A good
mix of such exercises can be a very effective teaching tool. Students need
not be asked to solve all problems, but should be assigned those that sup-
port the goals of the course and the viewpoint of the instructor. Computer
science curricula differ from institution to institution; while a few empha-
size the theoretical side, others are almost entirely oriented toward practical
application. I believe that this text can serve either of these extremes, pro-
vided that the exercises are selected carefully with the students’ background
and interests in mind. At the same time, the instructor needs to inform the
students about the level of abstraction that is expected of them. This is
particularly true of the proof-oriented exercises. When I say “prove that”
or “show that,” I have in mind that the student should think about how
a proof can be constructed and then produce a clear argument. How for-
mal such a proof should be needs to be determined by the instructor, and
students should be given guidelines on this early in the course.

The content of the text is appropriate for a one-semester course. Most
of the material can be covered, although some choice of emphasis will have
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to be made. In my classes, I generally gloss over proofs, giving just enough
coverage to make the result plausible, and then ask students to read the
rest on their own. Overall, though, little can be skipped entirely without
potential difficulties later on. A few sections, which are marked with an
asterisk, can be omitted without loss to later material. Most of the material,
however, is essential and must be covered.

Appendix B briefly introduces JFLAP, an interactive software tool avail-
able for free at www.jflap.org that is of great help in both learning and
teaching the material in this book. It aids in understanding the concepts
and is a great time saver in the actual construction of the solutions to the
exercises. I highly recommend incorporating JFLAP into the course.

The seventh edition of this book features two additions. The first is
a large number of new exercises, collected at the chapter ends, under the
heading Introductory Exercises to distinguish them from the already exist-
ing Exercises. These new exercises are largely very simple and require only
an understanding of the concepts. They are intended as a bridge to the
often much more difficult Exercises. The instructor can decide where and
for whom these new exercises can be of help. Chapters 1–14 of the sixth
edition, with the new exercises, are now reorganized as Part I: Theory.

Substantial new material comes in Part II: Applications, where we dis-
cuss some of the important issues in compiler construction in the context
of the material in Part I. This new material comes in response to peren-
nial student questions such as “How does this theory apply to the mostly
practical matters of computer science?” or even “Why do we have to know
all this abstract stuff?” We hope we have given a satisfactory response to
such questions.

How can this material be integrated into an existing course? Instruc-
tors who cannot find the time for it might use Part II as suggested reading
for curious students. But the material is important and attractive to many
students, so we recommend that some attempt to cover it in class be made.
Part I introduces the main aspects of the theory of computation, but not ev-
erything there is essential. Not only the starred sections, but many sections
in the latter part can be treated lightly or skipped altogether without loss
of continuity. Doing so might free a week or so for Part II. This coverage
can benefit many students. Those who never take a course on compilers will
get some understanding of what is involved in compiler design; for others
who do, it provides a first look at what will be covered later in more detail.

Peter Linz
Susan H. Rodger
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